Status of countermeasures for restoring from the accident at Fukushima Daiichi Unit 1 through 4. As of June 7th, 2011. (Estimated by JAIF)

Baseline information
- **Type of plant**: BWR-3, BWR-4
- **Operation status**: Stoppage
- **No. of fuel rods fueled in the reactor**: 400
- **No. of fuel rods fueled in the SFP**: 400
- **Current status of the plant and the progress of countermeasures**
 - **Status**: Plant shutdown due to the earthquake
 - **Radiation exposure of the workers**: EDOG automatically started up when the earthquake hit the plants.
 - **EDO currently**: Radiocative waste water

Reactor cooling

<table>
<thead>
<tr>
<th>Cooling by minimum injection rate</th>
<th>Establishment of circulating cooling</th>
<th>Nitrogen gas injection into PCV</th>
<th>Flooding of PCV after sealing leaks</th>
<th>Securing heat exchange function</th>
<th>Improving working environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizing the reactor by injecting freshwater into the reactor via feed water line at 5 m³/h.</td>
<td>Work for injection line in progress</td>
<td>Injection continued (4/6-8)</td>
<td>Work for injection line in progress</td>
<td>Work for secondary-loop piping</td>
<td>High radiation contamination is hampering the work to restore reactor cooling. Removing radioactive contaminated debris, radiation monitoring and other preparation work is underway in each unit.</td>
</tr>
<tr>
<td>Stabilizing the reactor by injecting freshwater into the reactor via feed water line at 5 m³/h.</td>
<td>Work for injection line in progress</td>
<td>Injection continued (4/6-8)</td>
<td>Work for injection line in progress</td>
<td>Work for secondary-loop piping</td>
<td>Work for injection line in progress</td>
</tr>
<tr>
<td>Stabilizing the reactor by injecting freshwater into the reactor via feed water line at 5 m³/h.</td>
<td>Work for injection line in progress</td>
<td>Injection continued (4/6-8)</td>
<td>Work for injection line in progress</td>
<td>Work for secondary-loop piping</td>
<td>Work for injection line in progress</td>
</tr>
<tr>
<td>Stabilizing the reactor by injecting freshwater into the reactor via feed water line at 5 m³/h.</td>
<td>Work for injection line in progress</td>
<td>Injection continued (4/6-8)</td>
<td>Work for injection line in progress</td>
<td>Work for secondary-loop piping</td>
<td>Work for injection line in progress</td>
</tr>
</tbody>
</table>

Reactor shielding

<table>
<thead>
<tr>
<th>Reactor shielding status</th>
<th>Reactor water level</th>
<th>Reactor pressure</th>
<th>Pressure of suppression pool</th>
<th>Water temperature of SFP</th>
<th>Water temperature of SFP</th>
<th>Water temperature of SFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation shielding</td>
<td>reactor shielding</td>
<td>reactor shielding</td>
<td>reactor shielding</td>
<td>reactor shielding</td>
<td>reactor shielding</td>
<td>reactor shielding</td>
</tr>
<tr>
<td>Unit 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/B 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T/B 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W/B 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reactor safety systems

<table>
<thead>
<tr>
<th>Reactor safety systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>Unit 2</td>
<td>Unit 3</td>
<td>Unit 4</td>
<td>Unit 1</td>
<td>Unit 2</td>
<td>Unit 3</td>
</tr>
<tr>
<td>Primary</td>
<td>Secondary</td>
<td>Primary</td>
<td>Secondary</td>
<td>Primary</td>
<td>Secondary</td>
<td>Primary</td>
</tr>
<tr>
<td>Radiation shielding</td>
</tr>
<tr>
<td>Radiation shielding</td>
</tr>
<tr>
<td>Unit 1</td>
<td>Unit 2</td>
<td>Unit 3</td>
<td>Unit 4</td>
<td>Unit 1</td>
<td>Unit 2</td>
<td>Unit 3</td>
</tr>
<tr>
<td>Primary</td>
<td>Secondary</td>
<td>Primary</td>
<td>Secondary</td>
<td>Primary</td>
<td>Secondary</td>
<td>Primary</td>
</tr>
<tr>
<td>Radiation shielding</td>
</tr>
<tr>
<td>Radiation shielding</td>
</tr>
</tbody>
</table>

Environmental monitoring

- **Environment exposure in the vicinity of the station**: 1,800Bq (Approx. 150,000Bq including the wastewater transferred to the Centralized Radiation Waste Treatment Facility).

Notes

- **EDO**: Emergency Due to Accident
- **PCV**: Pressure Containment Vessel
- **SFP**: Steam Supply Pipe
- **EDO**: Emergency Due to Accident
- **PCV**: Pressure Containment Vessel
- **SFP**: Steam Supply Pipe
- **EDO**: Emergency Due to Accident
- **PCV**: Pressure Containment Vessel
- **SFP**: Steam Supply Pipe
- **EDO**: Emergency Due to Accident
- **PCV**: Pressure Containment Vessel
- **SFP**: Steam Supply Pipe
- **EDO**: Emergency Due to Accident
- **PCV**: Pressure Containment Vessel
- **SFP**: Steam Supply Pipe
- **EDO**: Emergency Due to Accident
- **PCV**: Pressure Containment Vessel
- **SFP**: Steam Supply Pipe
- **EDO**: Emergency Due to Accident
- **PCV**: Pressure Containment Vessel
- **SFP**: Steam Supply Pipe
- **EDO**: Emergency Due to Accident
- **PCV**: Pressure Containment Vessel
- **SFP**: Steam Supply Pipe

References

- TEPCO's analysis [announced on 5/15, 23]
- Rough estimate by TEPCO [announced on 5/31]
[Significance judged by JAIF]
- Low
- High
- Severe (Need immediate action)

[Progress of countermeasures]
- Completed
- Under construction
- To be done (including studying and f.t.)

[Abbreviations]
- SFP: Spent Fuel Storage Pool
- EDG: Emergency Diesel Generator
- RPV: Reactor Pressure Vessel
- PCV: Primary Containment Vessel
- R/B: Reactor Building
- T/B: Turbine Building
- W/B: Waste Building
- RHR: Residual Heat Removal system
- CST: Condensate water Storage Tank
- Hx: Heat exchanger
- NPS: Nuclear power station