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Abstract

In the event of an accidental atmospheric release of radionuclides from a nuclear power plant, accurate real-time
forecasting of the activity concentrations of radionuclides is required by the decision makers for the preparation of
adequate countermeasures. The accuracy of the forecast plume is highly dependent on the source term estimation. On
several academic test cases, including real data, inverse modelling and data assimilation techniques were proven to
help in the assessment of the source term.

In this paper, a semi-automatic method is proposed for the sequential reconstruction of the plume, by implementing
a sequential data assimilation algorithm based on inverse modelling, with a care to develop realistic methods for
operational risk agencies. The performance of the assimilation scheme has been assessed through the intercomparison
between French and Finnish frameworks. Two dispersion models have been used: P3D and S developed in
two different research centres. Different release locations, as well as different meteorological situations are tested.
The existing and newly planned surveillance networks are used and realistically large multiplicative observational
errors are assumed. The inverse modelling scheme accounts for strong error bias encountered with such errors.
The efficiency of the data assimilation system is tested via statistical indicators. For France and Finland, the
average performance of the data assimilation system is strong. However there are outlying situations where the
inversion fails because of a too poor observability. In addition, in the case where the power plant responsible for the
accidental release is not known, robust statistical tools are developed and tested to discriminate candidate release sites.

This article has been published in Atmospheric Environmentwith the reference:
Winiarek, V., Vira, J., Bocquet, M., Sofiev, M., Saunier, O.,2011. Towards the operational estimation of a radi-
ological plume using data assimilation after a radiological accidental atmospheric release.Atmos. Env.45. 2944-2955.
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1. Introduction

1.1. Context
Emergency centres that are in charge of real-time es-

timation of the impact of an accidental release of pollu-
tant, are getting interested in testing and implementing
data assimilation techniques for source term estimation
as well as for plume dispersion forecast.

In the case of the IRSN, the French nuclear safety
agency, a simplistic Gaussian plume model was used so
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far as an operational forecast model. An Eulerian mod-
elling platform, ldX based on the P platform
(Quélo et al., 2007), is being implemented and should
serve as their reference forecast tool.

Since the beginning of this century, academic re-
searchers have been developing and testing, sometimes
with real data, inverse modelling techniques for acci-
dental release of pollutant, using Gaussian, Eulerian
and Lagrangian models. With increasing confidence,
they were able to demonstrate, at least at an academic
level, the potential of such techniques to operational
centres. In numerical weather forecasting, data assim-
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ilation has been implemented operationally very early:
the European Centre for Medium-range Weather Fore-
cast demonstrated that mathematical techniques, such as
4D-Var, could be used operationally with success on an
even more complex system.

That is why an agency such as the IRSN is getting
interested in the potential of data assimilation for their
operations. This paper addresses with synthetic exam-
ples what a data assimilation system built on hypothe-
ses as simple as possible, but without compromising the
efficiency of the system (essentially the forecast skill),
could achieve.

1.2. State of the art
Firstly, we would like to review the current status of

inverse modelling and data assimilation of atmospheric
tracer from an accidental origin, at continental scale. All
the methods cited below are Bayesian in nature, and that
is why they should not fundamentally yield different re-
sults.

Many of published inverse modelling techniques
in atmospheric tracer source inversion, are of non-
parametric nature: they attempt to retrieve large spatial
fields of variables, rather than a few selected parameters.
One typically looks for a source field, usually multi-
dimensional, typically one dimension for time and two
dimensions for the ground. If one knows the location
of the source, then a one-dimensional time rate profile
is usually sought. Robertson and Langner (1997); Seib-
ert (2001) were among the first to attempt such an in-
version using real data of the European Tracer Experi-
ment (Nodop et al., 1998) (ETEX). Issartel and Baverel
(2003); Issartel (2003) used projection methods (that are
equivalent to a 4D-Var approach in a linear model con-
text) and demonstrated the interest of a simplex method
on synthetic data case inspired from ETEX. Bocquet
(2005a) suggested to use a maximum entropy on the
mean inference in order to implement additional con-
straints on the source such as positivity and bounded-
ness. It was used successfully on the real ETEX data
(Bocquet, 2005b, 2007; Krysta et al., 2008), on the Al-
geciras dispersion incident (Krysta and Bocquet, 2007)
and on the Chernobyl accident (Davoine and Bocquet,
2007).

An advantage of these non-parametrical methods is
the robustness that often stems from the convexity of
the underlying cost functions. Another advantage is
their immediate generalisation to more complex prob-
lems, such as multiple sources or source with a signifi-
cant duration. They also share common grounds with
other atmospheric chemistry problems such as ozone
precursors source inversion in air pollution modelling

or greenhouse gas fluxes inversion. Being determinis-
tic methods, their aim is to provide an estimate of the
source, but second-order sensitivity analysis is also pos-
sible (Bocquet, 2008).

In the case of the inversion of a point-wise acci-
dental atmospheric source, one could use parametri-
cal methods instead (relying on a few parameters), by
looking for the location, time and rate of the source.
For instance, Yee et al. (2008) simply compute the
marginal posterior probability density function (pdf) on
a few selected parameters on the ETEX experiment.
Delle Monache et al. (2008) apply Markov Chain Monte
Carlo techniques for a stochastic estimation of the Al-
geciras source location. The major advantage of these
methods is the limited number of parameters that are
retrieved. Owning to the small number of parameters,
the full pdf (or marginal pdf) of these parameters can be
retrieved.

Assimilation of observations for the forecast of acci-
dental plume dispersion has been investigated in Politis
and Robertson (2004); Bocquet (2007) on the ETEX-
I case, and on a hypothetical regional case around a
power plant in Abida and Bocquet (2009). It was shown
that the plume can efficiently be controlled because of
the non-chaoticity of dispersion dynamics, provided the
source is well retrieved.

1.3. Objectives and outline
The objective of this paper is to assess the perfor-

mance of a simple inverse modelling and data assimi-
lation system. In particular one is interested in not only
the average performance of such a tool, but also in cases
where it may fail, which is of utmost importance toward
an implementation in operational centres. Different sit-
uations (sources, monitoring network, dispersion tools)
of two different countries, France and Finland, are ex-
plored.

The setup of the data assimilation experiments, along
with the models that are employed are described in Sec-
tion 2. An efficient data assimilation system, common
to the two national contexts, is presented in the same
section. Although the methodology is simple, it dif-
fers from simpler least-square schemes, because it is as-
sumed that the errors, being multiplicative, are source
dependent.

Within the framework of Section 2, a sensitivity anal-
ysis is carried out in Section 3, varying the context:
France or Finland, the meteorology for a fixed typi-
cal power plant, the power plants, the meteorological
conditions, the monitoring network, etc. The data as-
similation methodology assumes here that the origin
of the radiological release, one of the power plants, is
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known. This should be realistic as the management of
the nuclear power plant at risk should immediately raise
an alert (to the national authority, possibly European
Union, or the International Atomic Energy Agency).
However, history has shown that this is not always the
case. Besides, the accident may occur on a location
abroad. It is therefore necessary to complement the op-
erational data assimilation system with either a more
complex system that does not assume that the loca-
tion of the source is known, or with statistical tests that
would assess the probability of a site to be responsible
for the release. Since this paper is aimed at easily im-
plementable tools, the focus is on this second option.
Bayesian statistical tools are developed and tested in
Section 4.

The conclusions and perspectives are given in Section
5.

2. Methods and setup

2.1. France and Finland setup

As far as France is concerned, all the civil nuclear fa-
cilities are monitored, that is 19 nuclear power plants
and a nuclear fuel reprocessing plant located at La
Hague. The monitoring network that is used is the
one that has been proposed by Saunier et al. (2009),
called D then, and renamed recently O-
A (α = 1 configuration as described in Saunier et al.
(2009)). It is made of 100 stations, that measure activity
concentrations over a range of 10−6 − 109 Bq.m−3.

As for Finland, it was chosen to monitor 6 sites. Two
of them are located in Finland (one of them, Olkiluoto,
potentially stands for two power plants as a third gen-
eration European pressurised reactor is under construc-
tion there). Two others are in Sweden and the last two
ones are in Russia. The monitoring network is the actual
“Uljas” Finnish ambient rate dose monitoring network
of 255 stations. The power plant locations as well as the
monitoring networks are represented in Fig. 1.

As a simplification, we have hypothesised that the
stations of the Finnish and the French networks are mea-
suring activity concentrations instead of ambient dose.
This assumption simplifies the method since the assim-
ilation of ambient dose would require a spatial model
integration, and would require to properly take into ac-
count contamination effects of dose instruments.

The Finnish power plants are located on the shores,
and the Swedish and Russian power plants are quite far
from the Finnish monitoring network. This situation can
lead to difficulties in the inverse modelling process. This
is an important difference with the French setup where

the monitored power plants cover the country land, even
though not uniformly, and they are therefore well sur-
rounded by the measuring stations.

2.2. Dispersion modelling withP3D andS

The first numerical chemistry-transport model used
in this study is P3D, the Eulerian model of the
P platform. As far as radionuclides are con-
cerned, it has been validated on the European Tracer
Experiment, on the Algeciras incident and on the Cher-
nobyl accident (Qúelo et al. (2007)).

After the gamma dose instruments, most of the cur-
rent radionuclides monitoring devices are particle fil-
ters. That is why caesium-137, which disperses mostly
as fine particulate matter, was chosen as the species of
interest. The model integrates the concentration fieldc
of 137Cs, following the transport equation

∂c
∂t
+ div (uc) = div

(

ρ K∇
(

c
ρ

))

− Λs c− Λd c+ σ (1)

whereΛs is the wet scavenging rate,Λd represents the
radioactive decay andσ is the point-wise source for
137Cs. K is the matrix of turbulent diffusion, diagonal in
practice. The vertical component is given byKz, com-
puted with Louis parametrisation (Louis, 1979). The
horizontal componentKH is taken null. Except for the
boundary condition on the ground, all boundary con-
ditions are taken null. The boundary condition on the
ground is

−Kz∇c · n = −vdepc (2)

wheren is the unitary vector upward oriented, andvdep

is the dry deposition velocity of137Cs.
The advection is implemented thanks to a third-order

direct space-time scheme, with a Koren-Sweby flux lim-
iter function. Because of the sharp gradients found, it
is important that such a limiter be used. The diffusion
scheme is integrated through an implicit second-order
Rosenbrock scheme, with a three-point spatial scheme,
and directional splitting.

Caesium-137 is modelled as a passive gaseous tracer
with radioactive decay. Its half-life is 30 years. Its dry
deposition is modelled by using a simple scheme with a
constant deposition velocity:vdep = 0.5 cm s−1. As far
as the wet scavenging is concerned, the parametrisation
used in this study is Belot of the formΛs = apb

0, with
a = 8 × 10−5 andb = 0.8. p0 is the rain intensity, in
mm/h (Baklanov and Sørensen, 2001).

The S dispersion model includes both Eulerian
and Lagrangian dynamical cores. A description of the
model and the Lagrangian core is given by Sofiev et al.
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(2006). This work uses the more recent Eulerian core,
where horizontal and vertical advection is computed us-
ing the scheme by Galperin (2000). Vertical diffusion is
discretised as described in Sofiev (2002) with the diffu-
sion coefficientKz parametrised following Genikhovich
et al. (2004).

Dry deposition is computed using the standard re-
sistance analogy approach of Wesely (1989), with re-
sistances for aerosols parametrised after Zhang et al.
(2001). The wet deposition parametrisation follows
Sofiev (2000) for gases and Sofiev et al. (2006) for
aerosols.

Both transport models are then integrated in the Eu-
ropean domain with a spatial resolution of 0.25◦×0.25◦.
The number of grid points in the domain simulation is
240×160 for both models. The P3D model is con-
figured with 9 vertical levels ranging from 0 to 3300
m, while 7 levels ranging up to 6300 m are used with
S. Results are then saved respectively on French
and Finnish subdomains. On these subdomains, defined
as shown in Fig. 1, the indicators of performance con-
cerning the ability of the system to forecast the radioac-
tive plume will be calculated.

For this study, three periods of simulation are se-
lected. The first one is the whole 2007 year, used to
evaluate the performance of the system for one specific
power plant, varying the meteorological conditions. Ad-
ditionally, in order to test the average performance of
the system on every power plant, two shorter periods
(one week long) have been chosen. The first one is
the week starting 2 December 2007, selected for its
strong wind conditions. The second one is the week
starting 8 June 2007, characterised by its weak wind
speeds. The meteorological fields used in this study are
the fields calculated by the operational model from the
European Centre for Medium-range Weather Forecasts
(ECMWF). They have a resolution of 0.25◦ × 0.25◦ and
are available every 3 hours.

2.3. Inverse modelling methodology

The observation equation

µ = Hσ + ǫ , (3)

encodes the source-receptor relation:µ ∈ R
d is the vec-

tor of activity concentration measurements;σ ∈ R
N

is the vector that results from the discretisation of the
source term;ǫ ∈ R

d is a vector that represents errors
in the system (instrumental, representativity or model
errors);H ∈ R

d×N is an operator, the Jacobian matrix,
that not only stands for the observation operator but also
the full dispersion model.

The Jacobian matrix can be computed column by col-
umn using the forward numerical model when the num-
ber of source parameters is smaller than the number of
measurements. A column corresponds to the response
of the system (a set of measurements inR

d) to an el-
ementary source, typically a point-wise instantaneous
source with unit emission rate (read Abida and Bocquet
(2009) for more details). Alternatively, it can be com-
puted row by row when the number of source param-
eters is greater than the number of measurements. In
this latter case, it is necessary to use the adjoint model
since each row correspond to a solution of the adjoint of
the numerical model, which can be seen as a drawback
since deriving the adjoint can sometimes be a techno-
logical challenge. Equation (3) sets the inverse problem
when one looks for the vector components ofσ.

In order to compute each element of Eq. (3) with re-
liable, simple and efficient tools, with a view to opera-
tional constraints, we have made the following choices:

1. It is assumed that the source location is known and
is one of the nuclear power plants that are moni-
tored. This is consistent with the fact that in France
and in Finland, the power plant management must
report instantly any incident to the authorities.

2. Because the source location is known, we aim at
retrieving the source rate profile. For a time reso-
lution of one hour, this may represent of the order
of a few hundreds of parameters to solve for (for
instance 168 for a week of reconstruction).

3. This number of unknown parameters is small com-
pared to the number of activity measurements that
can be routinely obtained from the French or the
Finnish monitoring networks. Thus, when posing
the inverse problem,H should be computed col-
umn by column, using the forward model. This
scheme avoids the derivation of the adjoint.

4. The computation of the columns or impulses, can
be performed routinely. If the time resolution is set
to one hour, operational centre would hourly com-
pute one impulse for each one of the monitored
power plants. It would be stored to build upH.
Note that these simulations can be trivially paral-
lelised.

5. As a consequence, an up-to-date Jacobian matrix
H should always be available.

The synthetic measurementsµ that are generated for
the experiments contains errorsǫ t (called true errors)
that are lognormally distributed:

µ = Hσt + ǫ t (4)
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with
ǫ ti = (ei − 1) [Hσt] i (5)

ln (ei) being distributed according to 0.5 × N(0,1), the
Gaussian distribution of mean 0 and standard deviation
0.5. This implies that there is no bias in the median ofǫ t.
However the mean ofǫ t is biased. As far as amplitude is
concerned, these errors are significant and realistic for
an atmospheric tracer dispersion event. From this point,
the true errors are unknown and even the distribution of
the true errors is unknown. One has only access to the
(noisy) observationsµ. Nevertheless prior hypotheses
can be made on the errors.

If the prior hypotheses on the errors used in the data
assimilation scheme would follow the true errors (that
have been generated with the lognormal distribution),
then one should solve the inversion using a cost function
that accounts for the prior hypothesis such as in Abida
and Bocquet (2009).

But realistic errors do not have to follow a lognormal
distribution law, and it would be unwise to suppose a
priori that the errors are lognormal, even though the ac-
tual distribution might be similar. Here, we assume a
priori that the errors are Gaussian, following a normal
distribution

p(ǫ) =
exp

(

− 1
2ǫ

TR−1
ǫ

)

√

(2π)d|R|
, (6)

with error covariance matrixR (and|R| its determinant).
From this point, elementary Bayes inference leads to the
following cost function :

L (σ) =
1
2

ln |R| + 1
2

(Hσ − µ)T R−1 (Hσ − µ) , (7)

where the first term, seemingly constant, will be at use
shortly. At first, we are not assuming any regularisation
of the inversion. Indeed, becauseN ≪ d, no back-
ground term seems necessary, though this hypothesis
will be discussed in section 3.

Then, we assume a priori that the errors are Gaussian
but of multiplicative nature:R is diagonal and the vari-
ances [R] ii depend on the measurementsµi . Assuming
that the variances are multiplicatively related to thetrue
(errorless) measurementsµt

i =
[

Hσt]
i would be accu-

rate but unfortunately an inversion crime, since one has
only access to thenoisyobservations. Thus, a second
idea is to relate the variances to the (noisy) observations
µi . But, we have proved heuristically (see Appendix B)
and numerically checked that, on the assumption that
the true errors are lognormal, this would lead to a large
underestimation of the source by a factor of exp(− 3

2χ),

whereχ is the variance parameter of the lognormal dis-
tribution. In an accidental context, one must avoid such
an undershoot.

As a consequence, it is assumed that the error at-
tached to the measurementµi is proportional to the
corresponding analysed measurement [Hσ] i , which is
the best approximation ofµi that can be known:ǫi ∼
r[Hσ] iN(0,1), with r chosen to ber = 50%. This
also accounts for the fact that prior error distribution
can only ideally match the true distribution. With this
formulation, one obtains the following cost function:

L (σ) =
d

∑

i=1













ln ([Hσ] i) +
1

2r2

([Hσ] i − µi)
2

[Hσ]2
i













. (8)

The retrieval of the source termσ is carried out through
the minimisation of the cost function Eq. (8), using the
L-BFGS-B limited-memory quasi-Newton minimiser
(Liu and Nocedal (1989)). More generally the online es-
timation of error covariances for atmospheric problems
has been dicussed by Dee (1995).

2.4. Data assimilation methodology
In an emergency situation, and at current timetn the

sequential data assimilation system counts three main
steps :

1. Preprocessing step: All available data in the in-
terval [tn − ∆ta, tn] are collected (where∆ta is
the assimilation interval). In parallel, the ele-
mentary solutions corresponding to this time in-
terval are computed using the forward chemistry-
transport model. The system needs to compute
∆ta/∆tsource elementary solutions and store them
(where∆tsource is the reconstructed source resolu-
tion).

2. Analysis step: The updatedH matrix is computed
column-by-column using all elementary solutions
from t0 to tn. The measurement vectorµn contain-
ing all the observations fromt0 to tn is also built
up. Then an estimation of the source termσn is ob-
tained by minimisation of the cost function Eq. (8).

3. Forecast step: A forecast of∆t f hours fromtn to
tn+∆t f is performed using the chemistry-transport
model fromt0 andtn + ∆t f . The source term used
in this simulation isσn betweent0 to tn and an es-
timation of the source rate between current time
tn and tn + ∆t f . We chose to implement the per-
sistence assumption, which means that the source
rate beyond current time is taken equal to the last
retrieved component ofσn. It is usually safer be-
cause for a decreasing rate profile, it will overesti-
mate the source term rather than underestimate it.
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This can be invalidated by the presence of a second
peak in the source term as we shall see.

This simple procedure has been tested successfully
by Abida and Bocquet (2009), with a view to the target-
ing of observations, but at a regional scale rather than at
continental scale. More details can be found there.

2.5. The source term

The source term that has been selected, provided by
the IRSN, corresponds to a core-meltdown without hull
breach. There is a second peak 24 hours after the be-
ginning of the accident due to an intentional release to
alleviate the pressure inside the confinement hull. The
source term is displayed in Fig. 2, among further results.

3. Sensitivity analysis of the data assimilation sys-
tem

To compare the reference and the retrieved field (the
source rate profile or the concentration field of the
plume), we use several statistical indicators. For the
plume, a specific figure of merit indicator fm is defined
at some timeτ as follows:

fm =
∑

h∈S min
(

[c]h, [ct]h
)

∑

h∈S max
(

[c]h, [ct]h
) , (9)

whereS denotes the set of spatial grid cells index,ct is
the true concentration field at timeτ, andc represents
the reconstructed plume field at the same time. It has
been used in a similar context but in the ETEX context
by Bocquet (2007).

The root mean square error (rmse) compares the
source term reference and the estimate of the source at
some timeτ and is given by:

rmse=

√

√

√

1
N

N
∑

n=1

(

[σt]n − [σ]n
)2
, (10)

whereσt, σ are respectively the source reference and
the estimated source at timeτ. A Pearson correlation
coefficient is also used:

ρ =

N
∑

n=1

[σ − 〈σ〉]n[σt − 〈σt〉]n
√

(

∑N
n=1[σ − 〈σ〉]2

n

) (

∑N
n=1[σt − 〈σt〉]2

n

)

, (11)

where〈 〉 denotes the average over time.

3.1. Time-averaged performance for one power plant

To demonstrate the performance of the data assimi-
lation system, the focus is first on the Belleville nuclear
power plant which is central in France. Over one year of
meteorology (2007), an accident was considered every
hour. These 8760 accidents required as many seven-
day simulations with P3D. For each accident, the
source term was estimated by inverse modelling using
all available observations (during one week, i.e. 168
hours), and the methodology described earlier. Averag-
ing over all accidents, the mean reconstructed source is
reported in Fig. 2, along with the true source. The dotted
curves are the standard deviation lower and upper limits
around the mean solution. The main estimation errors
occur in the vicinity of the peaks. Yet it was checked
that these errors are attenuated by the use of the objec-
tive function Eq. (8) that accounts for multiplicative er-
rors.

0 12 24 36 48 60 72 84 96
Time (hours after the start of the release)

0

1e+09

2e+09

3e+09

4e+09

R
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 r
at
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q/
s)

True source
Mean reconstructed source

0 12 24 36 48 60

1e+07

1e+08

1e+09

Figure 2: Mean reconstructed source (dashed line) as compared to the
true source (full line) using all available observations. The upper and
lower curves indicate the standard deviation range of the reconstructed
sources. In insert, the same curves are represented using a logarithmic
scale.

In an emergency situation, the observations are as-
similated sequentially and an estimate of the source
term is produced every hour. This is different from the
previous a posteriori estimation which relies on all ob-
servations. Figure 3 reports the average sequential rmse
on the source reconstruction. No impact of the second
peak is visible on the curves because they are mainly
driven by the errors on the first peak. The Pearson cor-
relation coefficient is also reported. Obviously, the latter
is not very stringent, and one should rather rely on rmse.

As for the plume forecast estimation, the figure of
merit of the concentration field 3 hours after the assimi-
lation time is plotted in Fig. 4. The impact of the uncer-
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Figure 3: Mean (full line) and median (dashed line) root mean square
error, assimilating observations sequentially. The upper and lower
curves (dotted lines) indicate the standard deviation range of the av-
erage rmse. In inset, the Pearson correlation coefficient is displayed
with a full line for the mean value and a dashed line for the median
value. The mean correlation plus/minus the standard deviations are
represented by the dotted curves.

tainty related to the second peak is patent with a drop of
performance over four hours.
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Figure 4: Mean (full line) and median (dashed line) figure of merit.
The upper and lower curves (dotted lines) indicate the standard devi-
ation range of the average figure of merit.

3.2. Global average performance

In the next step, the performance of the data assim-
ilation system is evaluated through a more global sys-
tematic test. For the French and the Finnish context, all
the power plants (20 in the French context and 6 in the
Finnish one) is tested, over two different periods of 168
accidents (one accident every hour during one week).

The first period is one week in June 2007, chosen for its
weak wind situation. The second period is one week in
December 2007, with a strong wind situation. Like in
Section 3.1, averaged performance are investigated for
the source reconstruction and the forecast plume. For
both periods, the results are similar to those obtained
for the Belleville power plant over a whole year (same
order of magnitude and evolution for the RMSE, cor-
relations and figures of merit). The median solution is
always better than the mean one, and the performance
of the system are higher in the French context than in
the Finnish one. This indicates that the system is mostly
efficient, except in some situations where it completely
fails (around 5% of the situations). These failure sit-
uations are associated to power plants located on bor-
ders or totally outside the monitoring network convex
envelop.

3.3. Usefulness of a source term regularisation

In some cases, especially in the Finnish context, with
monitored power plants near the shores or abroad, it
was found that the inversion (through the minimisation
of the cost function) may fail. This happens when the
monitoring network has little overlap with the plume. It
is then necessary to apply a regularisation, to use back-
ground information in the terminology of data assimila-
tion. Some prior knowledge on the source term is hy-
pothesised. For instance, simple prior statistics on the
source is given by the Gaussian multivariate distribution

p(σ) =
exp

(

− 1
2σ

TB−1
σ

)

√

(2π)N|B|
, (12)

where B is the background error covariance matrix,
which will be taken diagonal in this context. The diago-
nal elements [B] ii represent the a priori variances of the
source, characterising some uncertainty on the source

[B] i j = E[σiσ j ] , (13)

for all i, j = 1, · · · ,N.
The solution of the inverse problem is then the mini-

mumσ of the cost function

L (σ) =
1
2

ln|R| + 1
2

(µ − Hσ)T R−1 (µ − Hσ)

+
1
2
σ

TB−1
σ . (14)

B can simply be taken proportional to the identityB =
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m2I and then the cost function can be written as :

L (σ) =
d

∑

i=1













ln ([Hσ] i) +
1

2r2

([Hσ] i − µi)
2

[Hσ]2
i













+
1
2

N
∑

i=1

σ2
i

m2
. (15)

The value of scale parameterm matters, because it de-
termines the scale of the fluctuations in the source that
should be considered relevant or not. A very rough es-
timation is given by the maximum rate of the source. It
depends on the type of accident one is monitoring and a
lower one should be chosen for a less critical accident,
such as a breakdown of a vapour generating tube, with a
preventive release into the atmosphere of overpressure.

In our case one hasm ≃ 109 Bq/s. A too large value
of m would not render the regularisation operative for
the critical cases (nevertheless it would not render the
inversion impossible for the cases where regularisation
is not necessary) whereas a too low value might smooth
out relevant part of the source with high rate values that
should have been reconstructed otherwise.

The scalarm could be determined objectively using
hyper-parameter estimation techniques (e.g. Davoine
and Bocquet (2007); Krysta et al. (2008) in a similar
context). But its use in operational systems remains
risky, since the result of this estimation is very sensitive
to the context and is also computationally demanding.

As an example let us consider the nuclear power plant
of Kalinin (in Russia) in a strong wind case. Without
regularisation the inversion fails, whereas it is quite suc-
cessful when a background term is added, as reported in
Fig. 5. In this case, both observations generated by P-
3D and S are employed. The two retrievals are
consistent.

4. Bayesian tests for the discrimination of sources

Because one cannot always trust the nuclear facility
management to report an accident immediately and be-
cause one cannot guarantee that an international alert
will be raised without delay, one needs a diagnostic tool
that does not assume that the location of the accident is
known. Since we aim at an easily implementable tool,
more academic methods that seek for the location are
excluded, whatever successful they could have been on
a few test-cases. Instead, we have developed Bayesian
tests to help decide which nuclear site could be at the
origin of the radiological plume.
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Time (hours after the start of the release)
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1e+09

2e+09

3e+09

R
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True source
Retrieved source without regularisation (SILAM and POLAIR3D)
Retrieved source with regularisation (SILAM)
Retrieved source with regularisation (POLAIR3D)

Figure 5: Impact of the regularisation in the extreme case of aninver-
sion at Kalinin. The full line represents the true source. The retrieved
source without regularisation using observations generated from P-
3D or S are null. The retrieved sources obtained with a regu-
larised inversion are plotted with a dashed line (S) and a dashed-
dotted line (P3D).

4.1. Bayesian test with Gaussian assumptions

As a first example, it is assumed that the prior statis-
tics on the source follows the Gaussian distribution
Eq. (12). This may be considered as a rough approxi-
mation since the source should not be allowed to have
negative values. Yet, this simple assumption is often
used in atmospheric dispersion inverse modelling with
reasonable outcomes (Issartel and Baverel, 2003), al-
though non-Gaussian assumptions are preferable (Boc-
quet, 2008).

The source-receptor relationship is given again by
Eq. (3). Taking into account this mild prior informa-
tion on the source, the likelihood of the measurements
is

p(µ) =
∫

p(σ)p(µ|σ) dσ , (16)

where dσ represent the integration element over allσk

control variables. The conditional density of the dataset
knowing the sourcep(µ|σ), is easily given by the errors

p(µ|σ) =
exp

(

− 1
2(µ − Hσ)TR−1(µ − Hσ)

)

√

(2π)d|R|
, (17)

where R ∈ R
d×d is the observation error covariance

matrix. To simplify the integration, the error attached
to measurementµi is no longer assumed proportional
to the corresponding analysed measurement, but to the
measurement itself:ǫi ∼ rµiN (0,1). It was explained
earlier that it may lead to a severe under-estimation of
the source if for instance the real errors follow a lognor-
mal distribution. But source estimation is not the point
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here, and this approximation is secondary for these tests.
The Gaussian integration in Eq. (16) onσ then leads to
(see Appendix A for details)

p(µ) =
exp

(

− 1
2µ

T
(

HBHT + R
)−1
µ

)

√

(2π)d|HBHT + R|
. (18)

The likelihood p(µ) represents the probability of ob-
servingµ assuming that the statistical distribution of the
source follows Eq. (12). If one knows the location of
the release, say nuclear sitei, then it is straightforward
to obtain the likelihood of the datasetµ provided the
source prior statistics are Gaussian, and that the source
is located at sitei. The Jacobian matrixH can be re-
placed by that Jacobian matrix of sitei (a submatrix of
H).

pi(µ) =
exp

(

− 1
2µ

T
(

Hi BHT
i + R

)−1
µ

)

√

(2π)d|Hi BHT
i + R|

. (19)

L = 1
2µ

T
(

Hi BHT
i + R

)−1
µ, in the exponential of

Eq. (19) has been shown by Bocquet (2008) to be an ob-
jective measure of the gain of information by the obser-
vationsµ with respect to the hypothesis that the source
is at sitei. Intuitively, the bigger this information, the
smaller the likelihood of the measurements to be ex-
plained by a source at sitei. It is straightforward to
check that this is indeed the case on Eq. (19).

As a consequence, it is possible to use the set ofpi ,
with i running on all the suspected release sites. The
sum

∑

i pi , does not need to be 1, but thepi can be
normalised by their sum. For practical purposes, since
the inversion of the matrixHi BHT

i + R in R
d×d can be

expensive, the Sherman-Morrison-Woodbury transform
can be used to invert the matrixHT

i R−1Hi+B−1 in R
N×N

(N ≪ d) instead, so as to speed up the computation of
eachpi(µ). Then thepi would represent normalised in-
dices assessing the likelihood of each site, on the con-
dition that the release took place on one of the predeter-
mined sites.

When the latter assumption is violated, the normal-
ized pi/(

∑

j p j) are meaningless but the absolute low
values of allpi should reveal this violation.

4.2. Bayesian tests knowing the source term shape

The Gaussian prior Eq. (12) is not very constraining.
For instance, each one of the source independent scalar
rates could either be positive or negative. On the other
hand, operational centres have built a list of possible
source terms for several types of accidents. As a prior

piece of information, one could assume that the source
term (sayσb) belongs to this list. However it is unlikely
that the magnitude of the real event would match the
magnitude of this prior, even though the shape of the
source rates is similar. Thus, one could rather assume
that the source is of the formλσb, with λ a positive
parameter distributed according to some given lawp(λ).

The prior distribution of the source is then formally
given by

p(σ) =
∫ ∞

0
δ(σ − λσb)p(λ) dλ . (20)

As a result the observations likelihood reads

p(µ) =
∫

p(σ)p(µ|σ) dσ =
∫ ∞

0
p(λ)p(µ|λσb) dλ .

(21)
For instance,λ could follow a gamma distribution

p(λ) =
λk−1e−λ/θ

θkΓ(k)
. (22)

In the case (k = 1, exponential law), the likelihood reads
(see Appendix C for details)

p(µ) =

√

π

2
e−

1
2µ

T R−1
µ

θ
√

(2π)d|R|
e

(µT R−1
µb−θ−1)2

2µbR−1µb

√

2µT
b R−1

µb

×

























1− Φ

























θ−1 − µTR−1
µb

√

2µT
b R−1

µb

















































, (23)

whereΦ(u) = 2√
π

∫ u

0
e−x2

dx is the error function, and
µb = Hσb is the errorless set of observations that would
be obtained from the first guess source termσb. This
case favours low scale factorλ. Settingθ = 1 implies
that the average source term isσb.

A more appropriate prior distribution ofλ could be a
gamma distribution of indexk = 2 which excludes too
low values forλ, and reaches a maximum atθ (the mean
being 2θ). The likelihood reads

p(µ) =
e−

1
2µ

T R−1
µ

θ2
√

(2π)d|R|
1

µ
T
b R−1

µb

×






















1−
√

π

2
θ−1 − µTR−1

µb
√

µ
T
b R−1

µb

























1− Φ

























θ−1 − µTR−1
µb

√

2µT
b R−1

µb







































































.

(24)

In order for the average source term to beσb, one could
choose in this caseθ = 1/2. But θ = 1 is preferable
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because it would set the mode of the distribution toλ =
1 and hence to the source termσb.

Lastly, a semi-Gaussian distribution of densityp(λ) =
√

2
π
e−

λ2

2θ , would yield

p(µ) =
e−

1
2µ

T R−1
µ

√
θ
√

(2π)d|R|
e

(µT R−1
µb)2

2(θ−1+µTb R−1µb)

√

θ−1 + µT
b R−1

µb

×

























1+ Φ

























µ
TR−1

µb
√

2(θ−1 + µT
b R−1

µb)

















































. (25)

One may investigate the skills of these Bayesian tests
where the shape ofσb is the one of the true source but
with the wrong scaleσb = λtσt, since it is quite diffi-
cult to guess a priori the right scale. In that case defin-
ing ||µ||2

R−1 = µ
TR−1

µ, p(µ) only depends on the norm
||µb||R−1, and on the true scale parameterλt.

4.3. Validation

The following validation of the tests has been carried
out for both P3D and S.

4.3.1. Performance with time

At first we choosem = 109 Bq/s for the Gaussian
test andλt = 1 for the other (non-Gaussian) Bayesian
tests, which corresponds to optimal conditions for these
tests. We implement these new Bayesian tests on the
case of Sosnovy Bor. The (synthetic) true accident orig-
inates from this plant and the likelihood of Sosnovy Bor,
Loviisa, Olkiluoto, Kalinin, Oskarshamn, and Forsmark
to be the source is computed at 1,2, . . . ,7 hours after the
beginning of the accident. The results for the Gaussian
test are displayed in panel (a) of Fig. 6. The results for
the other Bayesian tests look very similar but they man-
age to discriminate the correct release site faster than
the Gaussian test (typically 2 hours faster).

A much more tangential case, with a poorly ob-
served plume, is given by a fictitious accident occur-
ring at Kalinin. In that specific example, the Gaus-
sian Bayesian test fails to discriminate Kalinin from the
other sites mentioned above. However the three other
non-Gaussian tests managed to do so gradually, as re-
ported in panels (b), (c) and (d) of Fig. 6. They almost
perform equally well, with an understandable asset for
the tests that have knowledge of the rate profile, up to a
scalar factor.

4.3.2. Changing the prior fluctuation scale
As mentioned earlier, the prior scale of the source

should be chosen wisely depending on the expected
type of accident, and the order of magnitude of the
source term. We have studied the performance of these
Bayesian tests when the scalesm or λt are varied and
deviate from the true scale.

One typical example is reported on Fig. (7), when
Belleville is the source, and the 19 other French sites are
tested. The curves showing the likelihood for three sites
with prominent features (Belleville, Dampierre and Fes-
senheim) are shown 6 hours after the beginning of the
accident. The Gaussian test is used. For very low val-
ues ofm, the test cannot discriminate the nuclear power
plants. For very high values ofm, the test picks up the
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Figure 7: Gaussian Bayesian test for an accident in Belleville 6 hours
after the start of the release. The root mean square of the background
error which is the scalemof the fluctuation of the hypothesised source,
is varied and the test is performed for log10(m) = 0,1, · · · ,14.

wrong site: Fessenheim. Indeed, this site is farther away
(on the French-German border) and a very large source
is compatible with observations then, whereas the true
source magnitude is several orders of magnitude differ-
ent from the expected fluctuations thus leading to the
exclusion of Belleville.

Thus, in this case, there is a range of validity for the
test of four orders of magnitude.

In the case of the non-Gaussian tests, the behaviour
for low values ofλt is the same, but the performance for
high values ofλt are widely more robust, and the tests
fail only for unrealistic high values ofλt.

4.3.3. Global performance of the Bayesian tests
These indicators need to be tested on all potential

sources, so as to estimate their global performance. In
order to do so, the strong wind context, that is from 25
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November 2007 to 25 December 2007, is considered.
Every hour an accident is considered on each one of the
20 nuclear sites in France. For each batch ofp = 20
accidents, ap × p matrix L is built for all subsequent
times after the start of the accidents. The entry [L] i j is
defined by the likelihood of sitei in the accident from
site j. Only the normalised trace,1pTr(L) is studied. It
tells how well the correct site is identified, on average.
A trace is computed for each time lag from the start of
the release: 1h, 2h, . . . . Each one of them is averaged
over the whole strong wind 10-day period. According to
Krysta and Bocquet (2007); Abida and Bocquet (2009),
we expect the performance to be weaker compared to a
context with more stationary winds.

First, the Gaussian Bayesian test is used, with aB
matrix proportional to the identity. Its proportionality
coefficient is taken to bem2 = M2/τ, whereM is the
total mass expected to be released, andτ is the num-
ber of one-hour time-steps after the start of the release.
The non-Gaussian Bayesian tests have also been exten-
sively tested. First the priorσb is taken equal to the
true source, which represents the most favourable case.
Then these tests were carried out with priorsσb whose
shapes were significantly different from the true source
profile (for example taken as a monotonic or even as a
constant term). The results are reported in Fig. 8(a) for
the Gaussian tests, Fig. 8(b) for the semi-Gaussian tests,
and Fig. 8(c) for the semi-Gaussian test with a wrong
first guess. The average performances are impacted by
outliers, but the skills of the median are excellent. These
outliers are due to a poor observability of an event, that
the swift dispersion of radionuclides by strong advec-
tion makes worse. The results are comparable for the
Gaussian test and the non-Gaussian ones. Even when
the priorσb is different from the true source, the skill of
the median still reaches almost 100%. However, it does
so later, typically 5 hours later. These results confirm
the robustness of these non-Gaussian Bayesian tests.

5. Conclusion

In this paper, a semi-automatic sequential data as-
similation system has been developed. In the event of
an accidental atmospheric release of radionuclides from
a nuclear power plant, the objective of such a system
is mainly to accurately forecast the radioactive plume.
This ability is strongly constrained by the knowledge of
the source field and inverse modelling techniques have
been used in this aim. The main concern of this paper
was to use algorithms simple enough to be implemented
in an operational context, but still state-of-the-art.

It was assumed that the source location is known soon
enough. Consequently the Jacobian matrix can be com-
puted efficiently using the forward dispersion numerical
model, without resorting to the adjoint, and trivial par-
allelism can be used. Then the inversion of the source-
receptor equation is performed with Gaussian assump-
tions for errors statistics distributions. Yet it is assumed
that the variance of these errors are proportional to the
activity concentration value at the observation site. At
first, no regularisation and no background term has been
used, though this is contemplated later.

To evaluate the performance of the system, synthetic
experiments have been generated, varying the meteoro-
logical situations, the models, the monitoring network,
the release locations, etc., based on the cases of France
and Finland. The reconstruction statistical indicators
show good results in average. The source is swiftly and
well estimated and the forecast is accurate, even though
the assumption of persistence for the source first guess
can lead to a temporary (from 1 to 6 hours depending
on the forecast time) deterioration in the forecast qual-
ity if the true source is not monotonic. Cases where the
system failed (about 5% in our context) have been iden-
tified and alternate solutions have been proposed. The
critical situations are all due to a lack of observability
and concern mainly the power plants located on the pe-
riphery of the monitoring networks (near the frontiers,
on the shores or abroad).

Aside from accounting for multiplicative errors, a
second methodological novelty has been introduced.
Bayesian statistical indicators have been developed and
tested, when the origin of the release is not known or
not soon enough. These tests determine the likelihood
of a plant to be responsible for the release, knowing the
observations and some prior ideas on the source term.
They differ from each other by the assumptions made
on the prior statistics on the source. The first indicator
assumes a Gaussian distribution for these statistics. The
results are very good in average, over a large range of
value for the parameters in the prior. Yet, this indicator
may fail in critical situations, for example for a release
site far from the monitoring network. A second type of
indicators have been proposed, assuming that the tem-
poral profile of the source is known but not its exact
magnitude. Then the results are excellent even when
the prior temporal profile does not match the true one.
The guilty power plant is quickly identified even when
its location is far from the monitoring network.

Additional tests have been performed that are not re-
ported here because they have not made systematic. For
instance, what is result of the inversion for an uncharted
source location?
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In this paper, it was assumed that the monitoring net-
work were measuring directly activity concentrations in
the air whereas current networks are mostly reporting
gamma dose. Assimilating the gamma dose measure-
ments using the proper integrating observation operator
may amplify the potential errors, and this would need to
be taken into account in a future operational system.
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paper is a contribution to the INSU/LEFE-ASSIM
project 2007-21: ”Application of advanced data assimi-
lation techniques to the dispersion of accidental release
of pollutants in case of emergency”.

Appendix A. Bayesian test with Gaussian assump-
tion

If the prior statistics of the source follows the Gaus-
sian distribution Eq. (12), i.e.

p(σ) =
exp

(

− 1
2σ

TB−1
σ

)

√

(2π)N|B|
, (A.1)

and since the conditional density of the dataset knowing
the source is given by the errors (Eq. (17))

p(µ|σ) =
exp

(

− 1
2(µ − Hσ)TR−1(µ − Hσ)

)

√

(2π)d|R|
, (A.2)

the likelihood of the measurements is given by Eq. (16)

p(µ) =
∫

p(σ)p(µ|σ) dσ (A.3)

Direct integration of Eq. (A.3) gives

p(µ) =
exp

(

− 1
2µ

TR−1
µ

)

√

(2π)d|B||R|
×

exp
(

1
2µ

TR−1H
(

HTR−1H + B−1
)−1

HTR−1
µ

)

√

|HTR−1H + B−1|
(A.4)

The Sherman-Morrison-Woodbury transform, ap-
plied to the numerator of the last member of the right
hand side term in Eq. (A.4), gives

(

HBHT + R
)−1
= R−1−

R−1H
(

HTR−1H + B−1
)−1

HTR−1

(A.5)

and the determinant matrix lemma for the denominator
gives

|HBHT + R| = |HTR−1H + B−1||B||R| (A.6)

Thus Eq. (A.4) becomes

p(µ) =
exp

(

− 1
2µ

T
(

HBHT + R
)−1
µ

)

√

(2π)d|HBHT + R|
(A.7)

The Eq. (A.4) and Eq. (A.7) are strictly equivalent.
One can use either one equation or the other to retrieve
the likelihood of the set of measurementsµ provided
that the source is located at site ipi (µ) by replacing
all H by its submatrixHi associated with site i. The
interpretation seems more convenient with Eq. (A.7)
since one retrieves in the exponential the termL =
1
2µ

T
(

Hi BHT
i + R

)−1
µ, which has been shown by Boc-

quet (2008) to be an objective measure of the gain of
information by the observationsµ with respect to the
hypothesis that the source is at sitei. Nevertheless, for
practical purposes, whenN ≪ d, it is more convenient
to implement Eq. (A.4), as the size of the matrix to in-
vert (which is the critical process in the implementation)
is much smaller.

Appendix B. Source bias without online error esti-
mation

We assume that the true errors are lognormal. How-
ever, unaware of the exact distribution of the errors, the
operator assumes normal obervational errors that are
proportional to the measurements. The observational
error covariance matrixR is diagonal with diagonal el-
ement [R] ii = r2µ2

i , as explained in Section 2.3. Like
for the whole paper, it is assumed that the number of
observation is significantly greater than the number of
emission rates to retrieve. Then the solution of the in-
verse problem Eq. (3) is

σ =
(

HTR−1H
)−1

HTR−1
µ , (B.1)

Each matrix element of the denominator is of the form

[

HTR−1H
]

kl
=

d
∑

i=1

r−2µ−2
i [H] ik[H] il . (B.2)

By the definition of the synthetic experiment, the ob-
servationµi readsxiµ

t
i , whereµt

i is the true observa-
tion, which cannot be accessed directly, andxi is a log-
normal random draw. A heuristic argument is that with
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many observations for a limited rate variables, this entry
averages out on the log-normal errors:

[

HTR−1H
]

kl
≃ Ex

[[

HTR−1H
]

kl

]

≃
d

∑

i=1

E
[

x−2
i

] (

rµt
i

)−2
[H] ik[H] jl . (B.3)

And, similarly for HTR−1
µ, one obtains

[

HTR−1
µ

]

k
≃ Ex

[[

HTR−1
µ

]

k

]

≃
d

∑

i=1

E
[

x−1
i

]

r−2
(

µt
i

)−1
[H] ik . (B.4)

With a lognormal law of standard deviation parame-
ter σ, one has E

[

x−2
i

]

∝ exp(2σ2), and E
[

x−1
i

]

∝
exp(σ2/2). As a consequence, the retrieved source is

σ ≃ e−
3
2σ

2 (

HTR−1
t H

)−1
HTR−1

t µ
t , (B.5)

whereRt is the unbiased observation error covariance
matrix that would have been used if one knew the true
measurements. This explains the bias ofe−

3
2σ

2
claimed

in the text. Even though the argument is heuristic, this
value has been confirmed by numerical experiments us-
ing the data assimilation system presented in this paper.

Appendix C. Bayesian tests knowing the source
term shape

If we assume that the source term is of the formλσb

with σb being a known source shape andλ a positive
parameter distributed according to some given lawp(λ),
the likelihood of the dataset of measurementsµ is given
by Eq. (21)

p(µ) =
∫ +∞

0
p(λ)p(µ|λσb) dλ (C.1)

If λ follows a gamma distributionp(λ) = λ
k−1e−

λ
θ

θkΓ(k) with
k = 1 (in other words an exponential law), then this
equation becomes

p(µ) =
∫ +∞

0

exp
(

− λ
θ

)

θ
×

exp
(

− 1
2 (λHσb − µ)T R−1 (λHσb − µ)

)

√

(2π)d|R|
dλ

(C.2)

The first step of the integration consists in isolating the
constant terms (i.e. not depending onλ), which leads,

if we nameµb = Hσb the errorless set of observations
that would be obtained from the first guess source term
σb, to

p(µ) =
e−

1
2µ

T R−1
µ

θ
√

(2π)d|R|
×

∫ +∞

0
exp

(

−1
2
µ

T
b R−1

µbλ
2 + (µTR−1

µb − θ−1)λ

)

dλ

(C.3)

Gaussian integration over [0,+∞[ is given by

∫ +∞

0
e−ax2+bx dx =

√

π

2
e

b2

4a

√
2a

[

1− Φ
(

−b

2
√

a

)]

(C.4)

whereΦ(u) = 2√
π

∫ u

0
e−x2

dx is the error function. In

our case,a = 1
2µ

T
b R−1

µb andb = µTR−1
µb − θ−1, and it

leads to Eq. (23), i.e.

p(µ) =

√
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2
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, (C.5)

The same calculation is done forλ following a
Gamma law withk = 2 (with a further integration by
parts) and forλ following a semi-Gaussian distribution
to obtain respectively Eq. (24) and Eq. (25).
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Figure 8: Mean normalised trace of the likelihood matrixL (full line)
as compared to the median normalised trace (dashed line). The up-
per and lower curves indicate the standard deviation range of the nor-
malised trace. Panel (a): in the case of the Gaussian Bayesiantest.
Panel (b): in the semi-Gaussian case of the non-Gaussian Bayesian
test, with the priorσb equal to the true source term. Panel (c): in the
semi-Gaussian case of the non-Gaussian Bayesian test, with the prior
σb taken as a constant term, equal to the mean of the true source.
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Figure 1: Representation of the domain of study and of the two subdomains centred on France and Finland. The black dots represent the monitoring
stations: the O-A network which is virtual in the French case (optimal network to be built), or the Finnish monitoring network. The locations
of the civil nuclear sites are indicated by triangles and rhombuses respectively.
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Figure 6: Panel (a): Gaussian Bayesian tests on the Sosnovy Bor case. Panel (b), (c), and (d): non-Gaussian Bayesian tests on the Kalinin
case. Panel (b) corresponds to the exponential,k = 1 case. Panel (c) corresponds to the exponential,k = 2 case. Panel (d) corresponds to the
semi-Gaussian case.
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