CHAPTER 49

All-Cancers, Males, 1940-1988: Fractional Causation by Medical Radiation

The boxes and tables in Chapter 49 provide the model for the subsequent chapters where we evaluate the post-1940 Fractional Causation, by medical radiation, of mortality from cancer and Ischemic Heart Disease.

• Table A summarizes the findings, by decade, including the 1940 percentage from Section 2 of the book. The sources for Table A are shown in its Column G. In several chapters, the table for 1970 is not shown in order to reduce pages. 1970 was chosen because the 1970 MortRates are interpolations (Chapter 4, Part 2b).

• Box 1 determines whether or not a post-1940 adjustment is obligatory, in order to achieve matching of the Census Divisions for smoking (Chapter 48, Part 5b). If adjustment is required, Box 2 calculates the appropriate adjustment factors. Chapter 49 shows the steps.

Because male All-Cancers include male Respiratory-System Cancers, it is no surprise that Box 1, below, shows results consistent with the results in Box 3 of Chapter 48. Below, Columns D and I, as well as Columns F and K, indicate clearly that a carcinogenic co-actor (smoking), which can contribute to male MortRates from All-Cancers, is operating more strongly in the LowTrio than in the TopTrio. We must match the Census Divisions for smoking.

	Table 49-A All-Cancers, Males: Fractional Causation by Medical Radiation over Time													
Year	Col.A Natl MR	Col.B Frac.C		Col.C R-Sq	Col.D X-Coef	Col.E StdErr	Col.F Coef/SE	Col.G Source						
1940	115.0	90 %		0.9508	0.7557	0.0650	11.6276	Chap.6						
1950	132.8	84 %		0.9330	0.8462	0.0857	9.8703	Tab 49-B						
1960	145.7	83 %		0.9407	0.9251	0.0878	10.5397	Tab 49-C						
1970	155.1	79 %		0.9415	0.9073	0.0855	10.6122	Tab 49-D						
1980	164.5	75 <i>%</i>		0.9386	0.8480	0.0820	10.3418	Tab 49-E						
1988	162.7	74 <i>%</i>		0.9348	0.7488	0.0748	10.1056	Tab 49-F						

Box 1, Chap. 49

All-Cancers, Males: Post-1940 Change in MortRates by Census Trios

1960 vs. 1940, by Trios: Col.D expresses change by ratios. Col.F expresses change by subtraction. 1988 vs. 1940, by Trios: Col.I expresses change by ratios. Col.K expresses change by subtraction. High-PhysPop Trio shows the lowest growth-ratio. Low-PhysPop Trio shows the highest growth-ratio.

	• 1940	>>>	• Compar	e 1960 wi	th 1940	• <<<	>>>	• Compar	e 1988 wi	th 1940	• <<<
	Col.A	 Col.B	Col.C	Col.D	Col.E	Col.F	Col.G	Col.H	Col.I	Col.J	Col.K
	1940	1960	Ratio	Input	Diff:	Input	1988	Ratio	Input	Diff:	Input
	MortRate	MortRate	Col.B	from	Col.B	from	MortRate	Col.G	from	Col.G	from
	Tab 6-A	Tab 6-A	/Col.A	Col.C	minus A	Col.E	Tab 6-A	/Col.A	Col.H	minus A	Col.J
Pacif	122.9	1 140.7	1.145	Avg Chg	17.8	Avg Chg	148.5	1.208	Avg Chg	25.6	Avg Chg
NewE	135.5	164.6	1.215	TopTrio	29.1	TopTrio	167.1	1.233	TopTrio	31.6	TopTrio
MidAtl	140.9	164.0	1.164	1.175	23.1	23.3	168.4	1.195	1.212	27.5	28.2
WNoCen	110.9	 135.6	1.223	A∨g Chg	24.7	Avg Chg	155.9	1.406	Avg Chg	45.0	Avg Chg
ENoCen	119.6	150.7	1.260	MidTrio	31.1	MidTrio	171.2	1.431	MidTrio	51.6	MidTrio
Mtn	99.8	118.7	1.189	1.224	18.9	24.9	139.1	1.394	1.410	39.3	45.3
WSoCen	86.9	133.8	1.540	Avg Chg	46.9	Avg Chg	172.9	1.990	Avg Chg	86.0	Avg Chg
ESoCen	73.6	125.1	1.700	LowTrio	51.5	LowTrio	188.2	2.557	LowTrio	114.6	LowTrio
SoAtl	88.9	137.1	1.542	1.594	48.2	48.9	175.8	1.978	2.175	86.9	95.8

- Part 1. Overview, and Purpose of Box 1
- Part 2. Co-Action among Carcinogens, Such as Xrays and Cigarettes
- Part 3. The Essence of the Smoking Adjustment
- Part 4. Explanation of Box 2
- Part 5. Explanation of Table 49-B and Every Similar Table

• Part 1. Overview, and Purpose of Box 1

Although Box 1 and Table 49-A appear on the first page of this chapter, Box 2 and Tables 49-B through 49-F are located in the usual place --- AFTER the text, at the end of the chapter.

1a. Chapter 49 as the Model for Subsequent Chapters

The text will explain how we make the Smoking Adjustment and how we then calculate Fractional Causation, by medical radiation, of the post-1940 Observed National MortRates for Cancer and Ischemic Heart Disease. The same steps will be used without further explanation in Chapters 50 through 65. Each chapter has its own Table-A, in which Column B summarizes the findings on Fractional Causation by medical radiation. The findings very strongly support Hypotheses 1+2. Chapter 66 summarizes the findings from Chapters 49 - 65, for easy comparison.

1b. The Purpose of Box 1

Box 1 of this chapter follows the model of Box 3 in Chapter 48, where its columns are explained in detail. Here, in Box 1 of Chapter 49, we look first at the findings in Columns D and I:

• - Col.D: The 1960 MortRates in the TopTrio of Census Divisions are 1.175 times their values in 1940, whereas the 1960 MortRates in the LowTrio of Census Divisions are 1.594 times their values in 1940.

• - Col.I: The 1988 MortRates in the TopTrio are 1.212 times their values in 1940, whereas the 1988 MortRates in the LowTrio are 2.175 times their values in 1940.

• - Columns F and K provide confirmation that a carcinogenic co-actor (smoking), which can contribute to male MortRates from All-Cancers, is operating more strongly in the LowTrio than in the TopTrio (Chapter 48, Part 5b). We must match the Census Divisions for smoking.

In the chapters which follow, Smoking Adjustments are made only if Box 1 demonstrates that they are required. The requirement is not assumed. For example, Box 1 of Chapter 62 does NOT produce a clear indication that a Smoking Adjustment is required.

• Part 2. Co-Action among Carcinogens, Such as Xrays and Cigarettes

Co-action among carcinogenic agents has been discussed already in the Introduction (Parts 4 + 5), and in Chapter 6 (Part 6). Co-action is a widely (but not universally) accepted expectation, which is supported by several lines of evidence.

Cigarette smoking and exposure to ionizing radiation are each well established causes of Cancer. And smoking is specifically identified as a CO-ACTOR with radiation by the National Research Council's BEIR-5 and BEIR-6 Committees (BEIR 1990, p.152, + BEIR 1999, p.33) --- meaning that smoking and radiation can make necessary contributions to the same fatal cases of Cancer and that the two carcinogens modify each other's carcinogenic potency.

2a. The 1990 BEIR Report's List of Co-Actors with Radiation

For the readers' convenience, we repeat BEIR 1990's list of co-actors with ionizing radiation (from BEIR 1990, p.152; already presented in our Chapter 6, Part 6): "As discussed in the preceding section, the carcinogenic process includes the successive stages of initiation and promotion. The latter phase, promotion, appears to be particularly susceptible to modulation, with cigarette smoking being a conspicuous example of a modulating factor. Susceptibility to the carcinogenic effects of radiation can

Radiation (Medical) in the Pathogenesis of Cancer and Ischemic Heart Disease

thus be affected by a number of factors, such as genetic constitution, sex, age at initiation, physiological state, smoking habits, drugs, and various other physical and chemical agents (UNSCEAR 1982)." (BEIR 1990 is citing the 1982 UNSCEAR Report in support of these statements.) Some of the confirmatory experimental evidence, of alteration of radiation's per-rad potency by other agents, is presented in BEIR 1990 also (pp.145-147).

The 1999 BEIR Committee (BEIR-6), which has almost no overlapping membership with the 1990 BEIR Committee (BEIR-5), embraces the same expectation of co-action among carcinogenic (and anti-carcinogenic) agents: "Radiation carcinogenesis, in common with any other form of cancer induction, is likely to be a complex multi-step process that can be influenced by other agents and genetic factors at each step" (BEIR 1999, p.5).

The BEIR 1990 list, of co-actors with ionizing radiation, embraces co-actors which may themselves be mutagens and explicitly embraces inherited mutations ("genetic constitution"). The list also calls the co-actors "factors" --- meaning that co-actors modify the carcinogenic per-rad potency of ionizing radiation by multiplication.

2b. Two Illustrations: How Co-Actors Can Biologically Alter the Potency of Xrays

How could exposure to non-xray co-actors (for instance, smoking-induced co-actors) multiply the carcinogenic potency of medical radiation, per rad of dose? Two illustrations suffice here. One way would be by interfering with correct repair of xray-induced damage to the genetic molecules. The result would be a higher frequency of xray-induced mutations per rad of dose. A different way would be by intensifying the carcinogenic CONSEQUENCES of xray-induced mutations --- for example, by blocking a signal for apoptosis (cell suicide), and leaving the cancer-prone cell alive. (Chapter 67, Part 2b, provides an additional type of illustration.) There is no reason to imagine that medical radiation is the only carcinogenic agent whose potency is affected by other agents.

2c. Implications of Co-Action for Changes in Cancer MortRates over Time

In the monograph's Introduction (Part 5), our illustrations reflect the expectation that all carcinogenic co-actors can interact with each other, and that each case of Cancer may have multiple co-actors. Therefore, if exposures to various co-actors change over time, the subsequent observed cancer MortRates reflect the NET effect of upward pressure from some agents and downward pressure from others.

The impact of nonradiation agents, upon the per-rad potency of radiation, means that we should expect that per-rad potency of xrays and gamma rays may vary from organ to organ. Although xrays and gamma rays have access to every cell of every organ, the chemical and infectious co-actors may not have "universal access" and, even when they have access, they may not have identical activity in cells of different types. Therefore, rising (or falling) exposure to a specific non-xray co-actor can be irrelevant, with respect to the subsequent cancer MortRates of any organ where that particular co-actor has little access or little activity.

2d. How Co-Action Determines the Approach to a Smoking Adjustment

Our Smoking Adjustment applies the expectations of co-action among carcinogenic agents, and modulation of radiation's per-rad potency by interaction with smoking and other carcinogenic agents. In our opinion, it would be irrational for anyone to propose that virtually all carcinogenic agents EXCEPT smoking co-act with each other.

Nonetheless, rejection of co-action is the assumption in Appendix-M, which is included in this monograph in order to show that support for Hypothesis-1 does not depend on co-action. In Appendix-M, we make the post-1940 Smoking Adjustment by assuming that smoking and medical radiation do not contribute to causing the same cases of Cancer. The rejection of co-action implies that, if smoking had been matched across the Census Divisions (emphasis on "if"), smoking would have simply added the same number of post-1940 cancer-deaths in every Census Division to the baseline cancer MortRate (the Constant). Such post-1940 additions do not degrade the tight and positive linear dose-responses, observed in 1940, between PhysPop and cancer MortRates (discussion in Chapter 5, Part 6a). The Fractional Causations calculated in Appendix-M support Hypothesis-1 for All-Cancers-Combined and Hypothesis-2 for Ischemic Heart Disease. But since we do NOT embrace

the denial of co-action assumed in Appendix-M, we proceed in Part 3 (below) with a Smoking Adjustment which incorporates the premises of co-action and modulation of radiation's potency by co-actors. Additional implications, of the Smoking Adjustment employed in Chapters 49 through 65, are discussed in Appendix-M, Parts 3 and 4..

• Part 3. The Essence of the Smoking Adjustment

The goal of the Smoking Adjustment is not to eliminate all of the post-1940 impact of cigarette smoking upon the MidTrio and LowTrio cancer MortRates. Rather, the goal is to eliminate only the post-1940 impact of EXTRA smoking in the MidTrio and LowTrio Census Divisions, compared with the TopTrio Census Divisions. Note: We use the phrase "post-1940 impact" as a reminder that exposure to a carcinogen or atherogen may precede some of the impact (the fatal consequences) by decades. All of Part 3 applies also to Chapters 64 and 65 (Ischemic Heart Disease).

3a. An Uncomplicated Method

In each decade after 1940, the average All-Cancer MortRate in the TopTrio changed, relative to its 1940 value. For each decade, we can ascertain by what factor the 1940 cancer MortRate changed in the TopTrio (Examples from Box 1, Columns D and I: 1960 change-factor = 1.175, and 1988 change-factor = 1.212). Then --- one decade at a time --- we can multiply the Observed 1940 Cancer MortRates, of the MidTrio and LowTrio Census Divisions, by the SAME change-factor which is observed in the TopTrio during each post-1940 decade. That is the method.

The resulting MidTrio and LowTrio MortRate values, for each decade, are reasonable approximations of the post-1940 cancer MortRates which would have been observed in the MidTrio and LowTrio Census Divisions, if there had not been EXTRA smoking (relative to the TopTrio) in the MidTrio and LowTrio Census Divisions. Part 3b explains what makes them reasonable approximations. The adjusted values become even better approximations, logically, after we apply a second change-factor for the post-1940 behavior of PhysPop itself (Part 4b).

3b. Why We Should Use the Same Change-Factor for All Census Divisions

Part 3a states that we multiply the Observed 1940 Cancer MortRates in the MidTrio and LowTrio by SAME change-factor observed in the TopTrio. Why are we entitled to say that the SAME change-factor would operate in all Nine Census Divisions, if the post-1940 impact of the cigarette co-actor had been alike (matched) across Census Divisions?

(A) We start with the observation that, in 1940, the impact of cigarettes and other nonxray co-actors with medical radiation was well matched across the Nine Census Divisions. The evidence for this statement consists of the very strong and positive LINEAR dose-responses observed between cancer MortRates and PhysPop (dose) in 1940. By definition (Chapter 5, Part 5a), the nearly perfect linear dose-responses mean that potency per dose-unit (PhysPop-unit) was nearly equal in all Nine Census Divisions. Such equality requires well matched co-actors (potency-modulators).

(B) In the ABSENCE of degraded matching during the post-1940 decades, we would necessarily expect that the nearly perfect and positive linear correlations observed in 1940, between medical radiation (PhysPop) and cancer MortRates, would persist indefinitely --- even if the slopes and National Cancer MortRates were to change (as many of them did) during the post-1940 decades. To expect otherwise (i.e., to expect 1940's tight, positive linear dose-responses to disappear) would be to expect repeal of the well-established causal relationship between ionizing radiation and cancer induction.

(C) The requirement here, for transferring the tight positive linear correlation observed in 1940 to the post-1940 decades, is to multiply the Observed 1940 Cancer MortRates by the SAME change-factor in all Nine Census Divisions. This operation is illustrated in Chapter 5, Part 6c. In regression #3 of that illustration, the original correlation persists unchanged AFTER every MortRate has been multiplied by the same change-factor. If the change-factor were 1.2 (for example) instead of 0.8, then the equation for the linear dose-response (y = mx + c) would become 1.2y = 1.2mx + 1.2c. The operation is valid not only for perfect correlations, but also for R-squared values below 1.0. Biologically, these relationships make sense. When smoking increases all the MortRates by the same

Chap.49

factor, it is because smoking has increased radiation's potency per dose-unit ("m") and also has raised the Constant (because smoking will increase the potency of the non-xray co-actors interacting with each other, too).

(D) When our Smoking Adjustment ensures that Post-1940 Cancer MortRates in all Nine Census Divisions change by the SAME change-factor, the adjustment ensures that post-1940 dose-responses, between PhysPop and Adjusted Cancer MortRates, will retain a tight, positive linear dose-response (Paragraph B). This is the rational expectation in the absence of extra smoking in the MidTrio and LowTrio Census Divisions, relative to the TopTrio. By making the post-1940 MortRate change-factor the same in all Nine Census Divisions, the adjustment ensures equal potency per dose-unit in all Nine Census Divisions (Paragraph C), and thus eliminates the unequal potency per dose-unit which results from extra smoking in the MidTrio and LowTrio Census Divisions.

Summary: Our Smoking Adjustment provides reasonable sets of Post-1940 Cancer MortRates because it (a) retains all the impact of smoking upon the TopTrio's MortRates, whose Post-1940 Observed Cancer MortRates are retained without any adjustment at all, and (b) adjusts the MidTrio and LowTrio MortRates to the values they would have had, if there had not been EXTRA smoking in those Census Divisions. After we obtain Post-1940 Adjusted MortRates for the MidTrio and LowTrio Census Divisions, we proceed to calculate Post-1940 Fractional Causations by medical radiation (Part 5c).

• Part 4. Explanation of Box 2

Because the Census Divisions were NOT properly matched for smoking, a Smoking Adjustment for the cancer MortRates is required. We must ascertain by WHAT factors the TopTrio's 1940 All-Cancer MortRates changed in subsequent decades. Then we can apply these reality-based factors to the Observed 1940 All-Cancer MortRates of the MidTrio and LowTrio.

4a. Part 1 of Box 2: TopTrio's Population-Weighted MortRates

Box 1 already provides 1.175 as the MortRate change-factor in the TopTrio for 1960 vs. 1940, and provides 1.212 as the factor for 1988 vs. 1940. But these factors were calculated, as an approximation, without obtaining population-weighted MortRates for the Top Trio. Now Part 1 of Box 2 provides average MortRates which are population-weighted for the TopTrio.

Example (1940), from the upper-left corner of Box 2, Part 1: Col.A presents the Observed MortRates from Table 6-A for the Pacific, New England, and Mid-Atlantic Census Divisions. Col.B presents the population of each Division from Table 3-B. The sum (45,710,039) is the 1940 population of the TopTrio. Then Col.C divides Col.B by 45,710,039, in order to find out what fraction of the TopTrio's population is contributed by each Census Division. That share is the weighting factor. Col.D multiplies each Observed MortRate by its own weighting factor, and the sum (136.070) is the population-weighted All-Cancer MortRate for TopTrio males in 1940. Box 2 follows the same procedure in all six sections of its Part 1.

4b. Part 2 of Box 2: Obtaining the Adjustment Factors

In Part 2 of Box 2, the Col.A presents the population-weighted MortRates for 1950-1988, obtained in Part 1. Col.B presents the 1940 population-weighted MortRate, also obtained in Part 1. Then Col.C divides each MortRate in Col.A by the 1940 MortRate, to obtain the factor by which the 1940 MortRates changed in each subsequent decade.

The change-factors in Col.C describe what was observed only in the TopTrio --- not in the MidTrio or LowTrio.

How different are results in Box 2, compared with the approximations used in Box 1? The population-weighted factor for 1960 is 1.151 (Box 2, Part 2, Col.C), whereas the non-weighted factor for 1960 is 1.175 (Box 1, Col.D) --- a ratio of 0.98 (for PopWeighted / NonWeighted). For 1988, the comparison is 1.174 (Box 2) versus 1.212 (Box 1, Col.I) --- a ratio of 0.97 (for PopWeighted / NonWeighted). Although the differences between population-weighted and non-weighted values turn out to be negligible here, the determination makes population-weighted values available, and so we use

them.

Col.C: The Change-Factors in the Top Trio, during 50 Years

In Col.C of Part 2, the change-factors contain no assumptions whatsoever. They report on the MortRate changes which were observed in the TopTrio (high-dose) Census Divisions over time.

If we multiplied each of the 1940 MortRates, observed in the six Census Divisions of the MidTrio and LowTrio, by 1.085 (from Col.C, for the year 1950), we would obtain six 1950 Adjusted MortRates which would no longer be elevated by the post-1940 impact from EXTRA smoking in those six Census Divisions. The 1950 Adjusted MortRates would incorporate approximately the SAME smoking effect observed in the Top Trio --- but they would not yet register some of the PhysPop effect, as explained below.

In eliminating the effect of unmatched cigarette smoking, we must NOT eliminate the effect of post-1940 growth (or decline) in Averaged PhysPops in the MidTrio and LowTrio, relative to the TopTrio. So, we must consult Table 47-B, which quantifies what happened after 1940. There are no assumptions in Table 47-B.

Column D: The PhysPop Adjustment

Col.D of Part 2 presents the ratios (from Table 47-B) which show that, relative to Averaged PhysPops in the TopTrio, Averaged PhysPop values fell a little in the MidTrio and rose a little in the LowTrio during the 1940-1990 years. Because radiation-induced cancer MortRates are proportional to radiation dose, we must also adjust the 1940 MortRates for these slightly uneven post-1940 changes in Averaged PhysPop over time.

Therefore, we plan to multiply the MidTrio and LowTrio 1940 MortRates by TWO adjustment factors (from Col.C and Col.D). Of course the sequence makes no difference. So we can multiply Col.C by Col.D ahead of time, and obtain a combined Adjustment Factor in Col.E. The Col.E Adjustment Factors for the year 1950 get used in Table 49-B, the 1960 Adjustment Factors get used in Table 49-C, and so forth.

• Part 5. Explanation of Table 49-B and Every Similar Table

There are three parts in Table 49-B and similar tables:

• - Calculation of the Adjusted MortRates for MidTrio and LowTrio.

• - Linear regression-analysis: MortRates upon Averaged PhysPops.

• - Calculation of estimated Fractional Causation, by medical radiation, of the Observed

National MortRates for Cancer (Chapters 49 - 63) and for Ischemic Heart Disease (Chapters 64, 65).

5a. Part 1 of Table 49-B: Adjusted MortRates for the Year 1950

COLUMN C. Col.C is included just as an easy error-check on the entries in Col.A and Col.B. If the sum of Col.C is NOT a close match for the Observed 1950 National MortRate from Table 6-B, then we know that we have made an entry-error somewhere.

COLUMN F. Although this column is labeled "Adjusted MortRates," the MortRates for the TopTrio are not adjusted in any manner. They are identical with the Observed 1950 MortRates in Col.B. By contrast, the six entries for the MidTrio and LowTrio are their Observed 1940 MortRates (in Col.D) times the Adjustment Factor in Col.E (which comes from Box 2, Part 2, Col.E). This set of Adjusted MortRates retains all of the smoking-effect on the TopTrio MortRates. Only the effect of EXTRA smoking has been eliminated from the MidTrio and LowTrio MortRates. Note: Column F of Table 49-B differs in one small way from the illustration discussed in Part 3b of the text. The 1950 cancer Mortrates in Col. F, for the three census divisions of TopTrio, are the cancer MortRates OBSERVED in 1950, directly from Table 6-A. If they were the observed 1940 rates times the 1950 change-factor of 1.085 (from Box 2, Part 2, Col.C, then the top three entries in Col.F would be calculated from Table 6-A as follows: Pacific = 122.9 * 1.085 = 133.3; and New England = 135.5 * 1.085 = 147.0; and Mid-Atlantic = 140.9 * 1.085 = 152.9.

Chap.49 Radiation (Medical) in the Pathogenesis of Cancer and Ischemic Heart Disease

COLUMN G. In order to obtain a population-weighted National Adjusted MortRate, we multiply the values in Col.F by their own population-fraction in Col.A.

Return to a Promise Made at the End of Chapter 48

We promised, at the end of Chapter 48, that readers would be able easily to compare the "before and after" MortRate values, each time we make a MortRate adjustment in any chapter. The "before" rates are always in Col.B, and the "after" rates are always in Col.F. As noted above, the TopTrio MortRates are not adjusted at all --- and are the same in Col.B and in Col.F.

Eliminating the effect of EXTRA smoking on MortRates, in the MidTrio and LowTrio, always produces Adjusted MortRates which are lower than the Observed MortRates in those six Census Divisions. And, consequently, the National Adjusted MortRate is always lower than the National Observed MortRate. The difference between the two rates quantifies the part of the Observed National MortRate which results from the co-action, of the UNMATCHED share of smoking, with medical radiation and with other carcinogenic agents.

5b. Part 2 of Table 49-B: Linear Regression Analysis

COLUMN C. This is the output from linear regression analysis, so familiar from earlier chapters. The very high R-squared value in Column C matches expectation and confirms that the Adjustment achieves the tight linear correlation which would occur if co-actors were matched (text, Part 3c). INPUT: The Averaged PhysPop values come from Table 47-A. The 1950 Adjusted MortRates come from the same Table 49-B: Part 1, Col.F.

COLUMN E. This regression-output comes from substituting the 1940 PhysPop values (Col.D) for the 1940-1950 Averaged PhysPops. We do this as another easy error-check. The PhysPop rankings are so stable over time that, even in 1990, the correlation between Mean 1940-1990 PhysPops and 1940 PhysPops has an R-squared value of 0.91 (Chapter 47, Part 3b). Therefore, we must expect that this extra regression will produce similar output to the main regression in Col.C. If it does NOT, then we know that we have made an entry-error somewhere.

5c. Part 3-A of Table 49-B: Fractional Causation

Here, the calculation of post-1940 Fractional Causation is essentially the same as the calculation in Chapters 6 through 21, and Chapters 40 and 41. Here, too, the radiation-induced MortRate is divided by the entire OBSERVED National Cancer MortRate.

The Smoking Adjustment permits us to estimate what the national radiation-induced Cancer MortRate would have been, if Cancer MortRates in the MidTrio and LowTrio had not been elevated by EXTRA smoking. Then we ask, "And what share does the estimated radiation-induced MortRate contribute to the ENTIRE Observed National Cancer MortRate, which INCLUDES the consequences of extra smoking in the MidTrio and LowTrio?" Paragraph 3 of Part 3-A provides the answer (with Part 3-B as an error-check):

Medical radiation accounts for about 84 percent of the entire Observed National All-Cancer MortRate for males in 1950.

5d. Approximations: A Characteristic of Epidemiology

Our post-1940 Smoking Adjusted MortRates in the MidTrio and LowTrio Census Divisions are necessarily approximations --- as are all the statistical adjustments for matching which fill the peer-reviewed epidemiological literature.

A reminder here is appropriate. Approximations can suffice, in epidemiology, in answering some questions definitively. Here, the question is: Did medical radiation cease, after mid-century, to be a major cause of mortality rates for Cancer and Ischemic Heart Disease in the USA, or did it CONTINUE to be a necessary co-actor in a very large share of the national mortality rates for these two diseases? The estimated post-1940 Fractional Causations, from the tables in Chapters 49 through 65, provide a clear answer.

Box 2, Chap. 49

All-Cancers, Males: Calculation of Adjustment Factor

This adjustment is discussed fully in Chapter 49.

• Part1: Calculate average population-weighted MortRate for the combined TopTrio Census Divs.

	Col.A	Col.B	Col.C	Col.D	ļ.	Col.A	Col.B	Col.C	Col.D
Census	1940 MR	1940 Pop'n	1940 Popn	Col.A *	Census	1950 MR	1950 Pop'n	1950 Popn	Col.A *
Div.	Tab 6-A	Tab 3-B	/45,710,039	Col.C	Div.	Tab 6-A	Tab 3-B	/53,964,513	Col.C
Pacific	122.9	9,733,262	0.2129	26.17	 Pacific	127.2	14,486,527	0.2684	34.15
NewEng	135.5	8,437,290	0.1846	25.01	NewEng	152.4	9,314,453	0.1726	26.30
Mid-Atl	140.9	27,539,487	0.6025	84.89	Mid-Atl	156.0	30,163,533	0.5590	87.20
1940		Sum TopTrio	Sum	TopTrio	 1950		Sum TopTrio	Sum	TopTrio
		45,710,039	1.0000	136.070	i		53,964,513	1.0000	147.647
	Col.A	Col.B	Col.C	Col.D	 	Col.A	Col.B	Col.C	Col.D
Census	1960 MR	1960 Pop'n	1960 Popn	Col.A *	Census	1970 MR	1970 Pop'n	1970 Popn	Col.A *
Div.	Tab 6-A	Tab 3-B	/65,875,863	Col.C	Div.	Tab 6-A	Tab 3-B	/75,017,000	Col.C
Pacific	140.7	21,198,044	0.3218	45.28	 Pacific	147.2	26,087,000	0.3477	51.19
NewEng	164.6	10,509,367	0.1595	26.26	NewEng	167.5	11,781,000	0.1570	26.30
Mid-Atl	164.0	34,168,452	0.5187	85.06	Mid-Atl	167.9	37,149,000	0.4952	83.15
1960		Sum TopTrio	Sum	TopTrio	i i 1970		Sum TopTrio	Sum	Тортгіо
		65,875,863	1.0000	156.598	i		75,017,000	1.0000	160.639
*******	Col.A	Col.B	Col.C	Col.D		Col.A	Col.B	Col.C	Col.D
Census	1980 MR	1980 Pop'n	1980 Popn	Col.A *	Census	1988 MR	1990 Pop'n	1990 Popn	Col.A *
Div.	Tab 6-A	Tab 3-B	/80,615,000	Col.C	Div.	Tab 6-A	Tab 3-B	/88,495,000	Col.C
Pacific	153.7	31,523,000	0.3910	60.10	 Pacific	148.5	37,837,000	0.4276	63.49
NewEng	170.3	12,322,000	0.1528	26.03	NewEng	167.1	12,998,000	0.1469	24.54
Mid-Atl	171.8	36,770,000	0.4561	78.36	Mid-Atl	168.4	37,660,000	0.4256	71.66
1980		Sum TopTrio	Sum	ΤορΤrio	 1988		Sum TopTrio	Sum	TopTrio
		80,615,000	1.0000	164.493	i		88,495,000	1.0000	159.701

• Part 2: Take ratios of these TopTrio MortRates, with 1940 as the denominator of each ratio.

Fait 2. Take fait of these topinto workers, with 1940 as the adiominator of each fait.

Col.D modifies Col.C by separate PhysPop adjustments for MidIrio and LowIrio Census Divisions.

	Col.A	Col.B	Col.C	Col.D	Col.E	
	Top⊺rio	1940 TopTrio	= Col.A	ppAdju	= Col.C	ALL CANCERS.
	Mean MR	Mean MR	/ Col.B	Tab 47-B	* Col.D	Males.
				MidTrio		
1950	147.647	136.070	1.085	0.99	1.07	= MidTrio Adjustment Factor, 1950
1960	156.598	136.070	1.151	0.97	1.12	= MidTrio Adjustment Factor, 1960
1970	160.639	136.070	1.181	0.95	1.12	= MidTrio Adjustment Factor, 1970
1980	164.493	136.070	1.209	0.94	1.14	= MidTrio Adjustment Factor, 1980
1988	159.701	136.070	1.174	0.94	1.10	= MidTrio Adjustment Factor, 1988
			· · · · • •	LowTrio		
1950	147.647	136.070	1.085	1.00	1.09	= LowTrio Adjustment Factor, 1950
1960	156.598	136.070	1.151	1.01	1.16	= LowTrio Adjustment Factor, 1960
1970	160.639	136.070	1.181	1.02	1.20	= LowTrio Adjustment Factor, 1970
1980	164.493	136.070	1.209	1.04	1.26	= LowTrio Adjustment Factor, 1980
1988	159.701	136.070	1.174	1.07	1.26	= LowTrio Adjustment Factor, 1988
======						

Chap.49 Radiation (Medical) in the Pathogenesis of Cancer and Ischemic Heart Disease John W. Gofman Table 49-B All Cancers, Males: Fractional Causation in 1950 Part 1. Calculation of the 6 Adjusted MortRates (Col.F) and the National Adjusted MortRate (Col.G). The last six entries in Part 1, Col.F, are the products of (Col.D * Col.E), as discussed in Chap. 49. Col.E Col.A Col.B Col.C Col.D Col.F Col.G 1950 1950 1940 MR AdjuFact 1950 PopFrac Obs MR A * B Mid,Low Bx2,Pt2 Adju A * F Trio-Sequence Tab 3-B Tab 6-A Tab 6-A Col.E MortRates Pacific 0.0961 127.2 12.224 127.2 12.224 New England 0.0618 152.4 9.418 152.4 9.418 0.2002 156.0 31.231 Mid-Atlantic 156.0 31.231 110.9 WestNoCentral 0.0933 125.3 11.690 1.07 118.66 11.071 0.2017 138.3 27.895 119.6 1.07 127.97 25.812 EastNoCentral 108.1 3.643 0.0337 99.8 1.07 106.79 Mountain 3.599 0.0965 112.7 10.876 86.9 WestSoCentral 1.09 94.72 9.141 0.0762 73.6 EastSoCentral 104.7 7.978 1.09 80.22 6.113 88.9 116.3 16.352 96.90 13.624 SouthAtlantic 0.1406 1.09 Sum = 131.3 Sum = 1950 Observed Natl MR from Table 6-B = 132.8 1950 Natl Adjusted MR = 122.2333 Part 2. -----Col.A Col.B Col.D Col.C Col.E Mean1940 1950 1940 All Cancers, Males: All Cancers, Males: PPs from Table 3-A 1950 Adjusted MortRates thru1950 Adju MRs 1950 Adjusted MortRates PPs from from Col.F Trioregressed on regressed on Tab 47-A Part 1 Mean 1940 thru 1950 PPs 1940 PhysPops Seq. (TrioSeq) x′ Regression Output: x'' **Regression Output:** Constant 10.4866 Pac 154.16 127.2 159.72 Constant 10.7576 Std Err of Y Est 7.1588 NewEng 162.03 152.4 161.55 Std Err of Y Est 7.9010 R Squared 0.9330 MidAtl 169.24 156.0 169.76 R Squared 0.9183 WNoCen 121.60 118.663 No. of Observation 9 123.14 No. of Observation 9 ENoCen 128.53 127.972 Degrees of Freedom 7 133.36 Degrees of Freedom 7 119.64 106.786 Mtn 119.89 WSoCen 102.64 94.721 X Coefficient(s) 0.8462 103.94 X Coefficient(s) 0.8326 84.44 80.224 Std Err of Coef. 0.0857 ESoCen 85.83 Std Err of Coef. 0.0938 99.91 96.901 SoAtl XCoef / S.E. = 9.8703 100.74 XCoef / S.E. 8.8729 Part 3-A. Part 3-B. I Calculation of Fractional Causation Calculation of Fractional Causation from Averaged PhysPops from 1940 PhysPops 1. Nonradiation rate is Adjusted 1. Nonradiation rate is Adjusted Constant (Part 2, Col.C) = 10.4866 Constant (Part 2, Col.E) = 10.7576 2. Radiation rate is Natl Adjusted 2. Radiation rate is Natl Adjusted MortRate (Part 1, Col.G = 122.2333) MortRate (Part 1, Col.G = 122.2333) minus Nonradiation rate (10.4866) = 111.7467 minus Nonradiation rate (10.7576) = 111.4757 3. 1950 Fractional Causation is radiation 3. 1950 Fractional Causation is radiation L rate (111.7467) divided by OBSERVED rate (111.4757) divided by OBSERVED I Natl MR Part 1,Col.C= 132.8 = 0.84 Natl MR Part 1, Col.C= 132.8 = 0.84 Ł ••••••

T

				Tab	le 49-C	======					
				, Males: Fr							
			=============		======	======	============		=======================================	=============	
Part 1.	tion of the 6 Adiu	inted Month	atao (Cal)			A					
	tion of the 6 Adju										
lie tas	t six entries in P	art i, tot	.r, are the	e products d	T (COL.	D * COL	.E), as d	scussed	in Chap. 49.		
		Col.A	Col.B	Col.C		Col.D	Col.E				
		1960	1960		1			Col.F	Col.G		
		PopFrac	Obs MR	A * B			AdjuFact Bx2,Pt2		A + F		
rio-Se	quence	Tab 3-B	Tab 6-A	A B		id,Low ab 6-A	-	Adju MortRate	A * F		
	Pacific	0.1182		16.631	•		CU(.E	140.7			
	New England	0.0586		9.646				164.6			
	Mid-Atlantic	0.1905		31.242				164.0			
	WestNoCentral	0.0858		11.634		110.9	1.12	124.21			
	EastNoCentral	0.2020		30.441		119.6		133.95			
	Mountain	0.0382		4.534		99.8		111.78			
	WestSoCentral	0.0945		12.644		86.9		100.80			
	EastSoCentral	0.0672		8.407		73.6		85.38			
	SouthAtlantic	0.1448		19.852		88.9					
							1.10	103.12	14.732		
			Sum =	145.0					Sum =		
196	60 Observed Natl M	R from Tabl		145.7	10	060 Nati	l Adjusted	- MP -	129.6991		
								- HK -	127.077		
art 2.											
	Col.A Col.B			Col	.c		Col.D			Col.E	
	Mean1940 196	0	All Cancer				1940		All Cancers, Male		
	thru1960 Adju MR	S		ted MortRat	es		PPs from		1960 Adjusted Mor		
rio-	PPs from from Col.F		regressed on Mean 1940 thru 1960 PPs			Table 3-A (TrioSeq)			regressed on 1940 PhysPops		
eq.	Tab 47-A Part 1										
	x′			egression O			x''		Regressi	on Output	
ac	155.69 140.1	7	Constant	8	.7654		159.72		Constant	8.1440	
ewEng	162.81 164.0	5	Std Err of	YEst 7	.2600		161.55		Std Err of Y Est	6.9237	
idAtl	167.04 164.0	כ	R Squared	0	.9407		169.76		R Squared	0.9461	
NoCen	118.15 124.208	3	No. of Obs	ervation	9		123.14		No. of Observatio		
NoCen	123.87 133.95	2	Degrees of	Freedom	7		133.36		Degrees of Freedo		
tn	117.40 111.776	5					119.89		•		
SoCen	102.31 100.804	÷	X Coeffici	ent(s) 0	.9251		103.94		X Coefficient(s)	0.9113	
SoCen	85.63 85.376	5	Std Err of	Coef. 0	0878		85.83		Std Err of Coef.	0.0822	
oAti	101.72 103.124	•	XCoef / S.	E. = 10	5397	397 100.74			XCoef / S.E.	11.0832	
					••••••						
art 3-A					•	rt 3-B.					
	ion of Fractional	Causation			Ca	Calculation of Fractional Causation					
rom Ave	eraged PhysPops				fr	om 1940	PhysPops				
Nonradiation rate is Adjusted				1.	1. Nonradiation rate is Adjusted						
Con	nstant (Part 2, Col			8.7654	1	Cons	tant (Par	t 2, Col.	E) =	8.1440	
_ ·-											
	ation rate is Natl				2.		tion rate		-		
	tRate (Part 1, Col				1	Mort	Rate (Par	t 1, Col.	G = 129.6991)		
min	us Nonradiation ra	ite (8.7654) = 1	20.9337	1	minu	s Nonradi	ation rat	e (8.1440) =	121.5551	
					1						
	Fractional Causat				3.				on is radiation		
	e (120.9337) divid	•	RVED		1	rate	(121.5551) divided	by OBSERVED		
Li a de	l MR Part 1,Col.C=	: 145 7	=	0.83	1	Mati	MR Part		145.7 =	0.83	

• Table 49-D is not included. Its results, for 1970, are shown in Table 49-A (p.375).

T

		=======				able 49-					
			AL	l Cancers,	Males:	Fraction	al Causat	tion in 19	80		
	==================			==#======			=============				
art 1.											
alculat	ion of the	6 Adjus	ted MortRa	tes (Col.F	F) and the	Nationa	L Adjuste	ed Mortkat	e (LOL.G)	n Chan 40	
he last	: six entri	es in Pa	rt 1, Col.	F, are the	e products	of (Col	U * COL	.E), as on	scussed	n Chap. 49.	
			0-1.4				Col.D	Col.E	Col.F	Col.G	
			Col.A	Col.B 1980	Col.C			AdjuFact	1980	00110	
			1980 DomEnne	Obs MR	A * B		Mid,Low	Bx2,Pt2	Adju	A * F	
			PopFrac	Tab 6-A	A D		Tab 6-A	-	MortRates		
rio-Sec	•		Tab 3-B	153.7	21.487			001.2	153.7	21.487	
	Pacific		0.1398	170.3	9.298				170.3	9.298	
	New Engla			171.8	28.003				171.8	28.003	
	Mid-Atlar WestNoCer		0.1630 0.0759	152.0	11.537		110.9	1.14	126.43	9.596	
			0.0759	169.5	31.290		119.6		136.34	25.169	
	EastNoCer Mountain		0.0502	134.7	6.762		99.8		113.77	5.711	
	WestSoCer	atral	0.1049	162.9	17.088		86.9			11.486	
	EastSoCer		0.0646	174.1	11.247		73.6		92.74	5.991	
	SouthAtla		0.1624	171.4	27.835		88.9		112.01	18.191	
	SouthAtta	ancre	0.1024	11 11.4	2.1000						
				Sum =	164.5					Sum =	
19	80 Observed	d Natl MR	from Tabl		164.5		1980 Nat	l Adjusted	d MR =	134.9330	
Part 2.	Col A				د. م	col.C		Col.D			Col.E
	Col.A Mean1940	Col.B 1980	n	All Cance	rs, Males:			1940		All Cancers, Males	
	thru1980				sted MortR			PPs from		1980 Adjusted Mort	
rio-	PPs from	•		-	essed on			Table 3-		regressed on	
Seq.	Tab 47-A		• • •	-	thru 1980) PPs		(TrioSeq)	1940 PhysPops	
eq.	x'	Ture I			Regression		:	x''		Regressio	n Output
ac	177.35	153.7	7	Constant		10.8567		159.72		Constant	12.5043
lewEng	185.86			Std Err o	f Y Est	7.4657		161.55		Std Err of Y Est	5.9915
lidAtl	186.11			R Squared		0.9386		169.76		R Squared	0.9604
NoCen	128.82			•	servation	9		123.14		No. of Observation	n 5
NoCen	133.71	136.34		Degrees o	f Freedom	7		133.36		Degrees of Freedom	n 7
ltn	133.45	113.77	7					119.89			
SoCen	114.66			X Coeffic	ient(s)	0.8480		103.94		X Coefficient(s)	0.9276
ESoCen	99.46	92.74	÷	Std Err o	of Coef.	0.0820		85.83		Std Err of Coef.	0.0712
SoAtl	124.62	112.01	1	XCoef / S	.E. =	10.3418		100.74		XCoef / S.E.	13.0350
Part 3-	Α.					I	Part 3-8	ι.			
	tion of Fr	actional	Causation			i	Calculat	ion of Fr	actional	Causation	
	eraged Phy					i	from 194	0 PhysPop	s		
						1	• •			الممغد معا	
	radiation		-			ļ		adiation			12 50/3
Co	nstant (Pa	rt 2, Co	l.C) =		10.8567		Cor	nstant (Pa	rt 2, Col	.E) =	12.5043
2 Da-	liation rat	a ie Not	1 Adjusted			1	2. Radi	iation rat	e is Natl	Adjusted	
	rtRate (Pa									.G = 134.9330)	
	nus Nonrad				124.0763					te (12.5043) =	122.428
						ļ				too to podicator	
	0 Fraction					ļ				ion is radiation	
	te (124.07				•	ļ				d by OBSERVED = 164.5 =	0.7
		1 04 0	= 164.5	=	0.75		Nat	ri MR Part	- I COL.C	= 164.5 =	u./

.

_ ____

Т

L

				Та	ble 49-				=======================================	
		All C	ancers, Mal	les: Fract	ional C	ausation	in 1988			
====== Part 1.		==================	=================	============	=======	========	=========	*====***		=============
	ation of the 6 A	diusted MortR	ates (Col A) and the	Nationa	Adjust	od NameDa	ta (0al 6		
The las	st six entries i	n Part 1. Col	.F are the	> nroducte	of (Col		E) og d	te (Col.6	i).	
			., are the			.0 - נסנ	.E), as d	Iscussed	in Chap. 49.	
		Col.A	Col.B	Col.C		Col.D	Col.E	Col.F	Col.G	
		1990	1988			1940 MR			cor.e	
		PopFrac	Obs MR	A * B		1id,Low	Bx2,Pt2		A * F	
rio-Se	equence	Tab 3-B	Tab 6-A			ab 6-A	•	MortRate		
	Pacific	0.1535	148.5	22.795				148.5	22.795	
	New England	0.0527	167.1	8.806				167.1	8.806	
	Mid-Atlantic	0.1527		25.715				168.4	25.715	
	WestNoCentral	0.0721	155.9	11.240		110.9	1.10	121.99	8.795	
	EastNoCentral	0.1713	171.2	29.327		119.6	1.10	131.56	22.536	
	Mountain	0.0543	139.1	7.553		99.8		109.78	5.961	
	WestSoCentral	0.1087	172.9	18.794		86.9		109.49	11.902	
	EastSoCentral	0.0621	188.2	11.687		73.6		92.74	5.759	
	SouthAtlantic	0.1725	175.8	30.325		88.9	1.26	112.01	19.322	
			Sum ≠	144 3						
19	88 Observed Natl	MR from Tabl		166.2 162.7		000			Sum =	
			005-	102.7	ſ	YOO Nati	Adjusted	JMR =	131.5917	
art 2.										
	Col.A Col	.В		Col	.c		Col.D			Col 5
	Mean1940 1	988	All Cancer				1940		All Cancers, Male	Col.E
	thru1990 Adju			ted MortRat	es		PPs from		1988 Adjusted Mor	
rio-	PPs from from			ssed on			Table 3-A		regressed on	
eq.	Tab 47-A Part	: 1	Mean 1940 -	thru 1990 P	Ps		(TrioSeg)		1940 PhysPops	
	×'		R	egression O	utput:		x''		Regressi	on Output
BC			Constant	10	.8756		159.72		Constant	16.4305
ewEng			Std Err of	YEst 7	.3475		161.55		Std Err of Y Est	7.1662
idAtl			R Squared	0	.9348		169.76		R Squared	0.9379
NoCen			No. of Obse	ervation	9		123.14		No. of Observation	
NoCen			Degrees of	Freedom	7		133.36		Degrees of Freedor	n 7
tn SoCen	145.91 109			_			119.89			
SoCen			Coefficie		.7488		103.94		X Coefficient(s)	0.8754
Atl	142.93 112		Std Err of		.0748		85.83		Std Err of Coef.	0.0851
	142.75 112	.01)	(Coef / S.E	= 10	.0156		100.74		XCoef / S.E.	10.2865
nt 3-A	۱.									
alculat	ion of Fraction	al Causation			•	art 3-B.				
	raged PhysPops						on of Fra	ctional C	ausation	
	• • • • • •				1 1	011 1940	PhysPops			
Nonr	adiation rate is	s Adjusted			1	Nonre	diation ra	ata ia da	liveted	
	stant (Part 2,)		1	0.8756	1 ''		tant (Pari			44 4705
					1	0013	Sans (raf)	, .01.		16.4305
Radi	ation rate is Na	atl Adjusted			į 2.	Radia	tion rate	is Natl	Adjusted	
Mor	tRate (Part 1, 0	Col.G = 131.59			i				G = 131.5917)	
min	us Nonradiation	rate (10.8756) = 12	0.7161	i	minus	s Nonradia	tion rat		115.1612
	_				1					
	Fractional Caus				3.	1988 (ractional	Causati	on is radiation	
	e (120.7161) div		VED		1				by OBSERVED	
Nat	l MR Part 1,Col.	.C= 162.7	=	0.74	1		MR Part 1			

Т