CHAPTER 16

Respiratory-System Cancers, Males: Relation with Medical Radiation

• Part 1. Introduction

Respiratory-System Cancers include cancers of the larynx, bronchus and trachea, of lung specified as primary, of lung unspecified as to whether primary or secondary, and of other parts of the respiratory-system (see Chapter 4, Part 5, Number 7).

This study produces negative Constants for the central estimate and for both of the confidence-limits on the X-Coefficient --- as shown in Box 3. In this situation, we hesitate to use any value for Fractional Causation in Figure 16-A. Instead, we will say that the true Fractional Causation is far more likely to be near 100% than to be a low percentage. The dose-response in Part 2j is highly significant.

• Part 2. How the Dose-Response Develops, 1921-1940

• - Part 2a.	1921	1940	Pogningtown Q is a	
	PhysPop	MortRate	Respiratory-System Ca, Males	
Pacific	165.11	12.0	Constant	i Output:
New England	142.24	13.5	Constant Std Fan of V Fac	-6.1174
West North Central	140.93	77	Sta Err of Y Est	3.4686
Mid-Atlantic	137.29	17 1	K Squared	0.2466
East North Central	136.06	10.6	No. of Observations	9
Mountain	135.38	78	Degrees of Freedom	7
West South Central	125.15	7.6	V Caster in the	_
East South Central	119.76	4.0	A Coefficient(s)	0.1192
South Atlantic	110.32	83	Staterr of Coef.	0.0788
•••••••••••••••••••••••••••••		0.5	Coefficient / S.E.	1.5136
• - Part 2b.	1923	1940	Respiratory-System C	
D 10	PhysPop	MortRate	Regression	a, wrates
Pacific	163.06	12.0	Constant	-6 075A
New England	137.39	13.5	Std Err of Y Est	-0.9734
west North Central	138.31	7.7	R Squared	0.22042
Mid-Atlantic	138.92	17.1	No. of Observations	0.3328
East North Central	131.82	10.6	Degrees of Freedom	9
Mountain	130.51	7.8		/
West South Central	119.16	7.6	X Coefficient(s)	0 1201
East South Central	113.16	4.9	Std Frr of Coef	0.1291
South Atlantic	106.79	8.3	Coefficient / S F	1 8685
• - Part 20				1.0005
• Talt 20.	1925 Dhuada	1940	Respiratory-System Ca	. Males
Pacific	PhysPop	MortRate	Regression	Output:
New England	101.0/	12.0	Constant	-6.2251
West North Control	138.31	13.5	Std Err of Y Est	3.1543
Mid-Atlantic	133.92	7.7	R Squared	0.3769
Fast North Control	134.36	17.1	No. of Observations	9
Mountain	127.54	10.6	Degrees of Freedom	ź
West South Control	122.30	7.8	-	,
Fast South Control	112.83	7.6	X Coefficient(s)	0.1275
South Atlantia	107.22	4.9	Std Err of Coef.	0.0619
South Atlantic	103.61	8.3	Coefficient / S.E.	2.0578
• - Part 2d.	1927	1040	D	
	PhysPop M	1940 AntRate	Respiratory-System Ca,	Males
Pacific	157.83	12 0	Regression (Dutput:
New England	137.50	13.5	Constant	-7.7067
West North Central	131 54	77	Sta Err of Y Est	2.8082
Mid-Atlantic	138 40	17 1	K Squared	0.5062
East North Central	126.18	10.6	No. of Observations	9
	120.10	10.0	Degrees of Freedom	7

hap.16 Radiatic	on (Medical) in the	Pathogenesis of	f Cancer and Ischemic Heart Diseas	e	John W. Gofmar
	118 75	7.8			
Mountain West South Central	108.25	7.6	X Coefficient(s)	0.1415	
Feet South Central	102.07	4.9	Std Err of Coef.	0.0528	
South Atlantic	102.13	8.3	Coefficient / S.E.	2.6786	
	1020	1940	Respiratory-System Ca,	Males	
• – Part 2e.	Dhus Don Mo	rtRate	Regression (Dutput:	
	156 64	12.0	Constant	-7.6693	
Pacific	130.04	13.5	Std Err of Y Est	2.6878	
New England	128.40	77	R Squared	0.5476	
West North Central	138 49	17.1	No. of Observations	9	
Mid-Atlantic	126 51	10.6	Degrees of Freedom	7	
East North Central	118 68	7.8	C		
Mountain	105 60	7.6	X Coefficient(s)	0.1424	
West South Central	09.41	4.9	Std Err of Coef.	0.0489	
East South Central	100.86	8.3	Coefficient / S.E.	2.9109	
			Despiratory-System Ca	Males	
• - Part 2f.	1931	1940	Respiratory-System Ca	Outout:	
-	PhysPop M	ortRate	Constant	-67703	
Pacific	159.97	12.0	Constant Std Ern of V Est	2 5697	
New England	142.35	13.5	Sid Eff of 1 Est	0 5865	
West North Central	126.50	7.7	No. of Observations	9	
Mid-Atlantic	140.82	17.1	No. of Observations	7	
East North Central	128.59	10.6	Degrees of 1 recubili	·	
Mountain	118.89	7.8	V Coefficient(s)	0.1344	
West South Central	105.95	1.0	Std Err of Coef	0.0426	
East South Central	96.73	4.9	Coefficient / S.E.	3.1510	
South Atlantic	99.59	8.3			
	1034	1940	Respiratory-System Ca	a, Males	
• - Part 2g.	PhysPop M	ortRate	Regression	Output:	
Desifie	160 09	12.0	Constant	-6.2805	
Pacific	148 60	13.5	Std Err of Y Est	2.1708	
New England	125.96	7.7	R Squared	0.7049	
West North Central	149.62	17.1	No. of Observations	9	
East North Central	129.36	10.6	Degrees of Freedom	7	
East North Central	117.16	7.8			
West South Central	104.68	7.6	X Coefficient(s)	0.1297	
Fast South Central	92.00	4.9	Std Err of Coef.	0.0317	
South Atlantic	98.41	8.3	Coefficient / S.E.	4.0891	
		1040	Respiratory-System C	a. Males	• • • • • •
 – Part 2h. 	1930 DI Doo N	1940	Regression	Output:	
	PhysPop N	12 0	Constant	-6.3345	
Pacific	158.44	12.0	Std Err of Y Est	1.9653	
New England	150.18	13.5	B Squared	0.7581	
West North Central	120.14	17.1	No of Observations	9	I
Mid-Atlantic	155.05	10.6	Degrees of Freedom	7	
East North Central	130.42	78	Degrees er rere		
Mountain	102.50	7.6	X Coefficient(s)	0.1294	ļ
West South Central	103.52	1.0	Std Err of Coef.	0.0276	,)
East South Central	89.94	83	Coefficient / S.E.	4.6842	!
South Atlantic	<i>yy</i> .10				
• - Part 2i	1938	1940	Respiratory-System C	Ca, Males	
• Tart 21.	PhysPop 1	MortRate	Regressio	n Output:	7
Pacific	157.62	12.0	Constant	-3.933	
New Enoland	154.08	13.5	Std Err of Y Est	1./390	J
West North Central	124.95	7.7	R Squared	0.8100	J
Mid-Atlantic	160.69	17.1	No. of Observations		/ 7
Fast North Central	131.98	10.6	Degrees of Freedom		/
Mountain	119.88	7.8	-	0.105	c
West South Central	102.79	7.6	X Coefficient(s)	0.125	D
	00.01	49	Std Err of Coef.	0.022	9
Fast South Central	88.21	4.2			^

I.

1

Chap.16 Radi	ation (Medical)	in the Pathogenesis	of Cancer and Ischemic Heart Dise	ase	John W. Gofman
• - Part 2j.	1940	1940	Respiratory-System Ca	a, Males	
	PhysPop	MortRate	Regression	Output:	
Pacific	159.72	12.0	Constant	-5.1002	
New England	161.55	13.5	Std Err of Y Est	1.4558	
West North Central	123.14	7.7	R Squared	0.8673	
Mid-Atlantic	169.76	17.1	No. of Observations	9	
East North Central	133.36	10.6	Degrees of Freedom	7	
Mountain	119.89	7.8	8		
West South Central	103.94	7.6	X Coefficient(s)	0.1169	
East South Central	85.83	4.9	Std Err of Coef.	0.0173	
South Atlantic	100.74	8.3	Coefficient / S.E.	6.7636	

Box 1 of Chap. 16 Summary: Regression Outputs, Respiratory-System Cancers, Males.						
Below are the summary-results from regressing the 1940 cancer MortRates upon the ten sets of PhysPops (1921-1940), as presented in Parts 2a-2j of this chapter.						
Part	PhysPop	R-squared	Constant	X-Coef	Std Err	X-Coef/SE
2a	1921	0.2466	-6.12	0.1192	0.0788	1.5136
2Ъ	1923	0.3328	-6.98	0.1291	0.0691	1.8685
2c	1925	0.3769	-6.23	0.1275	0.0619	2.0578
2d	1927	0.5062	-7.71	0.1415	0.0528	2.6786
2e	1929	0.5476	-7.67	0.1424	0.0489	2.9109
2f	1931	0.5865	-6.77	0.1344	0.0426	3.1510
2g	1934	0.7049	-6.28	0.1297	0.0317	4.0891
2h	1936	0.7581	-6.33	0.1294	0.0276	4.6842
2i	1938	0.8106	-5.96	0.1256	0.0229	5.4740
2j>	1940 Max	0.8673	-5.10	0.1169	0.0173	6.7636

Box 2 of Chap. 16 Input-Data for Figure 16-A. Respiratory-System Cancers. Males.							
Calc. MortRate = (0.1	169 * PhysPop) + (-5.)	10)					
1940 Observed PhysPops	1940 Observed MortRates	Best-Fit Calc. MortRates					
$ \begin{array}{c} 159.72\\ 161.55\\ 123.14\\ 169.76\\ 133.36\\ 119.89\\ 103.94\\ 85.83\\ 100.74\\ 70.00\\ 60.00\\ 50.00\\ 40.00\\ 30.00\\ 20.00\\ 10.00\\ 0\end{array} $	12.0 13.5 7.7 17.1 10.6 7.8 7.6 4.9 8.3	$13.571 \\ 13.785 \\ 9.295 \\ 14.745 \\ 10.490 \\ 8.915 \\ 7.051 \\ 4.934 \\ 6.677 \\ 3.083 \\ 1.914 \\ 0.745 \\ -0.424 \\ -1.593 \\ -2.762 \\ -3.931 \\ -5.100 \\ $					
	Box 2 of Chap. Figure 16-A. Respiral Calc. MortRate = $(0.1 \\ 1940 \\ Observed \\ PhysPops \\ 159.72 \\ 161.55 \\ 123.14 \\ 169.76 \\ 133.36 \\ 119.89 \\ 103.94 \\ 85.83 \\ 100.74 \\ 70.00 \\ 60.00 \\ 50.00 \\ 40.00 \\ 30.00 \\ 20.00 \\ 10.00 \\ 0 \\).$	Box 2 of Chap. 16 Figure 16-A. Respiratory-System Cancers. 1 Calc. MortRate = $(0.1169 * PhysPop) + (-5.1)$ 1940 1940 Observed Observed PhysPops MortRates 159.72 12.0 161.55 13.5 123.14 7.7 169.76 17.1 133.36 10.6 119.89 7.8 103.94 7.6 85.83 4.9 100.74 8.3 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0					

Box 3 of Chap. 16 Presumptive Fraction of Cancer MortRate Attributable to Medical Radiation.

Please see text in Chapter 6, Parts 4 and 6.

Respiratory-System Cancers. MALES.

 MALE National MortRate (MR) 1940, from Table 16-B Constant, from regression, Part 2j Fractional Causation, Best Est. = (Natl MR - Constant) / Natl MR # The Upper-Limit is 100%. Negative Constants produce values > 100%. 	11.0 -5.1002 146.4% # See Chapter	National MortRate Constant Frac. Causation 22, Part 3.
90% Confidence-Limits (C.L.) on Fractional Causation. See text in Ch	apter 6, Part	4b, please.
X-Coefficient, from Part 2j	0.1169	X-Coef., Best Est.
Standard Error (SE) of X-Coefficient, from Part 2j	0.0173	Standard Error
Upper 90% C.L. on X-Coef. = (Coef) + (1.645 * SE) =	0.1454	New X-Coefficient
New Constant = (Natl MR) - (New X-Coef * 1940 Natl PhysPop) =	-8.1931	New Constant
Frac. Causation, High-Limit = (Natl MR - New Constant) / Natl MR =	174.5% #	New Frac. Caus'n.
# The Upper-Limit is 100%. Negative Constants produce values > 100%.	See Chapter	22, Part 3.
Lower 90% C.L. on X-Coef. = (Coef) - (1.645 * SE) =	0.0884	New X-Coefficient
New Constant = (Natl MR) - (New X-Coef * 1940 Natl PhysPop) =	-0.6778	New Constant
Frac. Causation, Low-Limit = (Natl MR - New Constant) / Natl MR =	106.2% #	New Frac. Caus'n.
# The Upper-Limit is 100%. Negative Constants produce values > 100%.	See Chapter	22, Part 3.

Box 4 of Chap. 16 Error-Check on Our Own Work: Respiratory-System Cancer, Males.

Please see text in Chapter 6, Part 5.

Below, Columns A, C, and E come directly from the regression input in Part 2j. Column B, the fraction of the whole 1940 population in each Census Division, comes from Table 3-B in Chapter 3. Each Column-D entry is the product of (B-entry times C-entry). Each Column-F entry is the product of (B-entry times E-entry). PhysPops and MortRates are each "per 100,000."

The Weighted-Avg. Nat'l PhysPop, 1940, is the sum of Column-D entries =	132.04
The Weighted-Avg. Nat'l Male MortRate, 1940, is sum of Col.F entries =	10.79

The Nat'l Male MortRate is also (X-Coef * Nat'l PhysPop) + Constant =10.34Comparison: The Nat'l Male MortRate, 1940, in Table 16-B =11.00

(A) Census	(B) Pop'n	(C) PhysPon	(D) Weighted	(E) MortRate	(F) Weighted
Division	Fraction	1940	PhysPop	1940	MortRate
Pacific	0.0739	159.72	11.80	12.0	0.89
New England	0.0641	161.55	10.36	13.5	0.87
West No. Central	0.1027	123.14	12.65	7.7	0.79
Mid-Atlantic	0.2092	169.76	35.51	17.1	3.58
East No. Central	0.2022	133.36	26.97	10.6	2.14
Mountain	0.0315	119.89	3.78	7.8	0.25
West So. Central	0.0992	103.94	10.31	7.6	0.75
East So. Central	0.0819	85.83	7.03	4.9	0.40
South Atlantic	0.1354	100.74	13.64	8.3	1.12
Sums	1.0000		132.04		10.79

On the X-axis, PhysPop values = Physicians per 100,000 Population in the Nine Census Divisions of the USA Population, Year 1940. This variable is a surrogate for accumulated radiation dose --- the more physicians per 100,000 people, the more radiation procedures are done per 100,000 people.

On the Y-axis, Respiratory Cancer Mortality-Rate per 100,000 males = the reported rates in USA Vital Statistics for the Nine Census Divisions, Year 1940.

Shown above is the strongest relationship between these two variables (Part 2j). The nine datapoints (boxy symbols) were collected long ago for other purposes, and are free from potential bias with respect to this dose-response study.

Fractional Causation of Respiratory Cancer Mortality-Rate (Male) by Medical Radiation: ~100 % is far more likely than a low percent. See Text, Part 1.

Table 16-A. Respiratory-System Cancer MortRates by Census Divisions: Males.

Rates are annual deaths per 100,000 male population, USA, age-adjusted to the 1940 reference year. There are no exclusions by color or "race." Sources are stated in Table 16-B, and described in Chap. 4, Part 2. The Nine Census-Division MortRates are population-weighted (Chap. 4, Part 2b). The averages below them are not.

Census Division	1940	1950	1960	1970	1980	1988
Pacific	12.0	21.1	34.9	44.2	53.5	50.7
New England	13.5	23.6	38.1	47.7	57.3	56.3
West North Central	7.7	16.5	28.4	41.1	53.7	56.2
Mid-Atlantic	17.1	28.4	40.6	49.5	58.4	57.5
Fast North Central	10.6	21.8	35.7	48.6	61.4	62.3
Mountain	7 8	16.7	25.5	34.6	43.6	44.2
West South Central	7.6	19.0	34.9	48.9	62.8	67.9
Fast South Central	49	14.7	29.0	49.9	70. 8	79.1
South Atlantic	8.3	19.8	35.7	50.5	65.2	68.5
Average ALL	9,9	20.2	33.6	46.1	58.5	60.3
Average High-5	12.2	22.3	35.5	46.2	56.9	56.6
Average Low-4	7 2	17.6	31.3	45.9	60.6	64.9
Ratio, Hi5/Lo4	1.70	1.27	1.14	1.01	0.94	0.87

Table 16-B.

Respiratory-System Cancer Mortality Rates, USA National.

Rates are age-adjusted to the 1940 reference year. Both sexes: Deaths per 100,000 population (males + females). Males: Deaths per 100,000 male population. Females: Deaths per 100,000 female population. No exclusions by color or "race."

	Both Sexes	Male	Female
1940	7.2	11.0	3.3
1950	13.0	21.6	4.6
1960	19.5	35.2	5.3
1970	28.4	47.3	11.7
1070-81	36.1	59.4	18.0
1987-89		59.7	24.5

• - 1940, 1950, 1960: All rates come from Grove 1968, Table 67, p.686, "Malignant neoplasm of respiratory system, not specified as secondary (160-164)," ICD/7.

• - 1970: All rates by Divisions are interpolations (Chap. 4, Parts 2b, 2c), except that the 1970 National "Both Sexes" rate comes from PHS 1995, Table 30, p.110.

• - 1980: All rates (ICD/9, 160-165) come from the reference NatCtrHS 1980.

• - 1990: All rates for 1987-1989 come from Monthly Vital Statistics Vol.41, No.7, December 1992. The 1988 rates are an acceptable approximation for 1990 (Chap.4, Part 2b.)